scholarly journals Compressible Stokes Flow in Thin Films

2003 ◽  
Vol 125 (3) ◽  
pp. 543-551 ◽  
Author(s):  
D. E. A. van Odyck ◽  
C. H. Venner

A multigrid numerical solution algorithm has been developed for the laminar (Stokes) flow of a compressible medium in a thin film. The solver has been applied to two model problems each representative of lubrication problems in a specific way. For both problems the solutions of the Stokes equations are compared with the solutions of the Reynolds equation. The configurations of both model problems were chosen such that based on the ratio film thickness to contact length (H/L) the difference between the Reynolds and the Stokes solutions will be very small, so the geometry of the gap itself does not lead to a significant cross film dependence of the pressure. It is shown that in this situation the compressibility can still lead to a cross-film pressure dependence which is predicted by the Stokes solution and not by the Reynolds solution. The results demonstrate that limitations exist to the validity of the Reynolds equation related to the compressibility of the medium.

2019 ◽  
Vol 54 (1) ◽  
pp. 67-70 ◽  
Author(s):  
E. Ortiz ◽  
L. Martínez-Gómez ◽  
J.F. Valdés-Galicia ◽  
R. García ◽  
M. Anzorena ◽  
...  

In this work, we evaluated the efficiency of cerium oxide as sunscreen using titanium oxide as standard comparison material. Geant4 software was used to perform numerical simulation, we calculated the radiation dose that ultraviolet radiation deposits in a skin sample as a function of thin film thickness of the sunscreens. We found that in the interval between 5 and 15 nm of the thin film thickness and for wavelengths between 160 and 400 nm, cerium oxide has the potential to reduce the radiation dose more than 10% with respect to the same thickness band of titanium oxide. Using thin films of cerium oxide and titanium oxide with same thicknesses and greater than 45 nm, the difference in the attenuation of the radiation dose for both materials is less than 1%. The results lead us to propose cerium oxide as an alternative material to titanium oxide for the manufacture of sunscreens.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Weiguang Zhang ◽  
Jijun Li ◽  
Yongming Xing ◽  
Xiaomeng Nie ◽  
Fengchao Lang ◽  
...  

SiO2 thin films are widely used in micro-electro-mechanical systems, integrated circuits and optical thin film devices. Tremendous efforts have been devoted to studying the preparation technology and optical properties of SiO2 thin films, but little attention has been paid to their mechanical properties. Herein, the surface morphology of the 500-nm-thick, 1000-nm-thick and 2000-nm-thick SiO2 thin films on the Si substrates was observed by atomic force microscopy. The hardnesses of the three SiO2 thin films with different thicknesses were investigated by nanoindentation technique, and the dependence of the hardness of the SiO2 thin film with its thickness was analyzed. The results showed that the average grain size of SiO2 thin film increased with increasing film thickness. For the three SiO2 thin films with different thicknesses, the same relative penetration depth range of ~0.4–0.5 existed, above which the intrinsic hardness without substrate influence can be determined. The average intrinsic hardness of the SiO2 thin film decreased with the increasing film thickness and average grain size, which showed the similar trend with the Hall-Petch type relationship.


2020 ◽  
Vol 102 (21) ◽  
Author(s):  
Stephan Geprägs ◽  
Björn Erik Skovdal ◽  
Monika Scheufele ◽  
Matthias Opel ◽  
Didier Wermeille ◽  
...  

2005 ◽  
Vol 297-300 ◽  
pp. 1446-1451 ◽  
Author(s):  
Takeshi Kasuya ◽  
Hideto Suzuki

The fatigue strength of TiAl intermetallic alloy coated with TiAlN film was studied in vacuum at 1073K using a SEM-servo testing machine. In addition, three kinds of TiAlN films were given by physical vapor deposition (1, 3, and 10μ m). The fatigue strength of 3μ m was highest. Also, the fatigue strength of 1μ m was lowest. From this result, existence of optimum film thickness was suggested because the difference of fatigue strength arose in each film thickness. The justification for existence of optimum film thickness is competition of 45-degree crack and 90-degree crack. The 45-degree crack is phenomenon seen in the thin film (1μ m), and is caused by plastic deformation of TiAl substrate. The 45-degree crack is the factor of the fatigue strength fall by the side of thin film. In contrast, the 90-degree crack is phenomenon in the thick film (10μ m), and is caused as result of reaction against load to film. The 90-degree crack is the factor of the fatigue strength fall by the side of thick film. In conclusion, the optimum film thickness can perform meso fracture control, and improves fatigue strength.


2014 ◽  
Vol 979 ◽  
pp. 240-243
Author(s):  
Narathon Khemasiri ◽  
Chanunthorn Chananonnawathorn ◽  
Mati Horprathum ◽  
Pitak Eiamchai ◽  
Pongpan Chindaudom ◽  
...  

Tantalum oxide (Ta2O5) thin films were deposited as the protective layers for the metal surface finishing by the DC reactive magnetron sputtering system. The effect of the Ta2O5 film thickness, ranging from 25 nm to 200 nm, on the physical properties and the anti-corrosive performance were investigated. The grazing-incidence X-ray diffraction (GIXRD) and the atomic force microscopy (AFM) were used to examine the crystal structures and the surface topologies of the prepared films, respectively. The XRD results showed that the Ta2O5 thin films were all amorphous. The AFM micrographs demonstrated the film morphology with quite smooth surface features. The surface roughness tended to be rough when the film thickness was increased. To examine the protective performance of the films, the poteniostat and galvanometer was utilized to examine the electrochemical activities with the 1M NaCl as the corrosive electrolyte. The results from the I-V polarization curves (Tafel slope) indicated that, with the Ta2O5 thin film, the current density was significantly reduced by 3 orders of magnitude when compared with the blank sample. Such results were observed because of fully encapsulated surface of the samples were covered with the sputtered Ta2O5 thin films. The study also showed that the Ta2O5 thin film deposited at 50 nm yielded the most extreme protective performance. The Ta2O5 thin films therefore could be optimized for the smallest film thickness for highly potential role in the protective performance of the metal surface finishing products.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hendrik Wulfmeier ◽  
Dhyan Kohlmann ◽  
Thomas Defferriere ◽  
Carsten Steiner ◽  
Ralf Moos ◽  
...  

Abstract The chemical expansion of Pr0.1Ce0.9O2–δ (PCO) and CeO2–δ thin films is investigated in the temperature range between 600 °C and 800 °C by laser Doppler vibrometry (LDV). It enables non-contact determination of nanometer scale changes in film thickness at high temperatures. The present study is the first systematic and detailed investigation of chemical expansion of doped and undoped ceria thin films at temperatures above 650 °C. The thin films were deposited on yttria stabilized zirconia substrates (YSZ), operated as an electrochemical oxygen pump, to periodically adjust the oxygen activity in the films, leading to reversible expansion and contraction of the film. This further leads to stresses in the underlying YSZ substrates, accompanied by bending of the overall devices. Film thickness changes and sample bending are found to reach up to 10 and several hundred nanometers, respectively, at excitation frequencies from 0.1 to 10 Hz and applied voltages from 0–0.75 V for PCO and 0–1 V for ceria. At low frequencies, equilibrium conditions are approached. As a consequence maximum thin-film expansion of PCO is expected due to full reduction of the Pr ions. The lower detection limit for displacements is found to be in the subnanometer range. At 800 °C and an excitation frequency of 1 Hz, the LDV shows a remarkable resolution of 0.3 nm which allows, for example, the characterization of materials with small levels of expansion, such as undoped ceria at high oxygen partial pressure. As the correlation between film expansion and sample bending is obtained through this study, a dimensional change of a free body consisting of the same material can be calculated using the high resolution characteristics of this system. A minimum detectable dimensional change of 5 pm is estimated even under challenging high-temperature conditions at 800 °C opening up opportunities to investigate electro-chemo-mechanical phenomena heretofore impossible to investigate. The expansion data are correlated with previous results on the oxygen nonstoichiometry of PCO thin films, and a defect model for bulk ceria solid solutions is adopted to calculate the cation and anion radii changes in the constrained films during chemical expansion. The constrained films exhibit anisotropic volume expansion with displacements perpendicular to the substrate plane nearly double that of bulk samples. The PCO films used here generate high total displacements of several 100 nm’s with high reproducibility. Consequently, PCO films are identified to be a potential core component of high-temperature actuators. They benefit not only from high displacements at temperatures where most piezoelectric materials no longer operate while exhibiting, low voltage operation and low energy consumption.


2020 ◽  
Vol 12 (8) ◽  
pp. 1125-1129
Author(s):  
Shrutidhara Sarma

In depth understanding of resistivity of metals is of utmost importance for optimizing circuit designs and electrical systems. In this study, we investigated the relation between film thickness (in the range of 25−350 nm) and film resistivity of Cu thin films, with respect to thin film temperature sensors. The films were deposited in a vacuum deposition chamber over pyrex substrates and the film resistances were measured using 4 point probe technique. The empirical relationship established by Lacy has been used along with our experimental results in order to calculate the constants relating the filmsubstrate compatibility, which influences the change of resistivity with thickness.


Author(s):  
Makio Tamada ◽  
Yuta Sunami

Abstract Mesoporous silica (referred to as MPS), which has pores of hexagonal or cubic structure of several nm to several tens of nm on the surface, is attracting attention as a new material. MPS has a very large specific surface area, so it is used as an adsorbent for gas and water vapor, as a moisture absorbent, and as a separating material. Transparent MPS is also expected to be an optical functional material. MPS thin film is expected to be used as a thin film as an application example. Since MPS thin film can be used in various applications, it will be further developed by mass production. Leads to Therefore, in this study, mass production of MPS thin films and controlled the film thickness was studied. Roll-to-roll (referred to as R2R) production method and a micro gravure printing method was adopted as a method of mass production: transporting polypropylene film and coating on it. As a result, the MPS thin film prepared in this study had a pore structure. it was confirmed that the film thickness could be controlled by changing the peripheral speed ratio. It is considered that the size of the liquid pool between the coating rolls changed. The size and arrangement of the pores could be confirmed by FE-SEM observation.


Optik ◽  
2019 ◽  
Vol 199 ◽  
pp. 163517 ◽  
Author(s):  
Mahsa Etminan ◽  
Nooshin. S. Hosseini ◽  
Narges Ajamgard ◽  
Ataalah Koohian ◽  
Mehdi Ranjbar

Sign in / Sign up

Export Citation Format

Share Document