Effect of Air Distribution on Solid Fuel Bed Combustion

1997 ◽  
Vol 119 (2) ◽  
pp. 120-128 ◽  
Author(s):  
J. T. Kuo ◽  
W.-S. Hsu ◽  
T.-C. Yo

One important aspect of refuse mass-burn combustion control is the manipulation of combustion air. Proper air manipulation is key to the achievement of good combustion efficiency and reduction of pollutant emissions. Experiments, using a small fix-grate laboratory furnace with cylindrical combustion chamber, were performed to investigate the influence of undergrate/sidewall air distribution on the combustion of beds of wood cubes. Wood cubes were used as a convenient laboratory surrogate of solid refuse. Specifically, for different bed configurations (e.g., bed height, bed voidage, bed fuel size, etc.), burning rates and combustion temperatures at different bed locations were measured under various air supply and distribution conditions. One of the significant results of the experimental investigation is that combustion, with air injected from side walls and no undergrate air, has the maximum combustion efficiency. On the other hand, combustion with undergrate air achieves higher combustion rates but with higher CO emissions. A simple one-dimensional model was constructed to derive correlation of combustion rate as a function of flue gas temperature and oxygen concentration. Despite the fact that the model is one-dimensional and many detailed chemical and physical processes of combustion are not considered, comparisons of the model predictions and the experimental results indicate that the model is appropriate for quantitative evaluation of bed-burning rates.

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1036 ◽  
Author(s):  
Xinying Xu ◽  
Qi Chen ◽  
Mifeng Ren ◽  
Lan Cheng ◽  
Jun Xie

Increasing the combustion efficiency of power plant boilers and reducing pollutant emissions are important for energy conservation and environmental protection. The power plant boiler combustion process is a complex multi-input/multi-output system, with a high degree of nonlinearity and strong coupling characteristics. It is necessary to optimize the boiler combustion model by means of artificial intelligence methods. However, the traditional intelligent algorithms cannot deal effectively with the massive and high dimensional power station data. In this paper, a distributed combustion optimization method for boilers is proposed. The MapReduce programming framework is used to parallelize the proposed algorithm model and improve its ability to deal with big data. An improved distributed extreme learning machine is used to establish the combustion system model aiming at boiler combustion efficiency and NOx emission. The distributed particle swarm optimization algorithm based on MapReduce is used to optimize the input parameters of boiler combustion model, and weighted coefficient method is used to solve the multi-objective optimization problem (boiler combustion efficiency and NOx emissions). According to the experimental analysis, the results show that the method can optimize the boiler combustion efficiency and NOx emissions by combining different weight coefficients as needed.


Author(s):  
Junxiang Guo ◽  
Lingling Zhang ◽  
Daqiang Cang ◽  
Liying Qi ◽  
Wenbin Dai ◽  
...  

Abstract In this study, a novel swirl combustion modified device for steel slag was designed and enhanced with the objective of achieving highly efficient and clean coal combustion and also for achieving the whole elements utilization of coal. Coal ash and steel slag were melted in the combustion chamber and subsequently entered the slag chamber. The detrimental substances solidified and formed crystals, which allowed for the comprehensive utilization of the ash and slag. Our experiments mainly aimed to mitigate the formation of NOx, while using the heat and slag simultaneously during the coal combustion without a combustion efficiency penalty. The increase in the device’s energy efficiency and reduction in the NOx emissions are important requirements for industrialization. The experiments were carried out in an optimized swirling combustion device, which had a different structure and various coal feeding conditions in comparison to previously reported devices. The fuel-staged and non-staged combustion experiments were compared under different coal ratios (bitumite:anthracite). For the fuel-staged combustion experiments, the NOx concentration in the flue gas was observed to decrease significantly when the coal ratio of 1:1, an excess air coefficient of 1.2, and a fuel-staged ratio of 15:85 were used. Under these conditions, the flue gas temperature was as high as 1,620°C, while the NOx concentration was as low as 320 mg/m3 at 6 % O2. The air-surrounding-fuel structure that formed in the furnace was very beneficial in reducing the formation of NOx. In comparison to other types of coal burners, the experimental combustion device designed in this study achieved a significant reduction of NOx emissions (approximately 80 %).


Author(s):  
J. Shipinski ◽  
P. S. Myers ◽  
O. A. Uyehara

A spray-burning model (based on single-droplet theory) for heat release in a diesel engine is presented. Comparison of computations using this model and experimental data from an operating diesel engine indicate that heat release rates are not adequately represented by single-droplet burning rates. A new concept is proposed, i.e. a burning coefficient for a fuel spray. Comparisons between computations and experimental data indicate that the numerical value of this coefficient is nearly independent of engine speed and combustion-chamber pressure. However, the instantaneous value of the spray burning coefficient is approximately proportional to the instantaneous mass-averaged cylinder gas temperature to the one-third power.


Author(s):  
K.M. Moiseeva ◽  
◽  
A.Yu. Krainov ◽  
E.I. Rozhkova ◽  
◽  
...  

Swirling combustion is currently one of the most important engineering problems in physics of combustion. There is a hypothesis on the increase in the combustion efficiency of reacting gas mixtures in combustion chambers with swirling flows, as well as on the increase in the efficiency of fuel combustion devices. In this paper, it is proposed to simulate a swirling flow by taking into account the angular component of the flow velocity. The aim of the study is to determine the effect of the angular component of the flow velocity on the characteristics of the flow and combustion of an air suspension of coal dust in a pipe. The problem is solved in a twodimensional axisymmetric approximation with allowance for a swirling flow. A physical and mathematical model is based on the approaches of the mechanics of multiphase reacting media. A solution method involves the arbitrary discontinuity decay algorithm. The impact of the flow swirl and the size of coal dust particles on the gas temperature distribution along the pipe is determined.


Author(s):  
Theodoros C. Zannis ◽  
Dimitrios T. Hountalas ◽  
Elias A. Yfantis ◽  
Roussos G. Papagiannakis ◽  
Yiannis A. Levendis

Increasing the in-cylinder oxygen availability of diesel engines is an effective method to improve combustion efficiency and to reduce particulate emissions. Past work on oxygen-enrichment of the intake air, revealed a large decrease of ignition delay, a remarkable decrease of soot emissions as well as reduction of CO and unburned hydrocarbon (HC) emissions while, brake specific fuel consumption (bsfc) remained unaffected or even improved. Moreover, experiments conducted in the past by authors revealed that oxygen-enrichment of the intake air (from 21% to 25% oxygen mole fraction) under high fuelling rates resulted to an increase of brake power output by 10%. However, a considerable increase of NOx emissions was recorded. This manuscript, presents the results of a theoretical investigation that examines the effect of oxygen enrichment of intake air, up to 30%v/v, on the local combustion characteristics, soot and NO concentrations under the following two in-cylinder mixing conditions: (1) lean in-cylinder average fuel/oxygen equivalence ratio (constant fuelling rate) and (2) constant in-cylinder average fuel/oxygen equivalence ratio (increased fuelling rate). A phenomenological engine simulation model is used to shed light into the influence of the oxygen content of combustion air on the distribution of combustion parameters, soot and nitric oxide inside the fuel jet, in all cases considered. Simulations were made for a naturally aspirated single-cylinder DI diesel engine “Lister LV1” at 2500 rpm and at various engine loads. The outcome of this theoretical investigation was contrasted with published experimental findings.


2013 ◽  
Vol 842 ◽  
pp. 541-545
Author(s):  
Yun Guo ◽  
Zhi Qiang Huang ◽  
Shun Xin Yang

Natural gas heaters are widely used in gas-fired power plants to meet the combustion needs and to improve the combustion efficiency. For the control features and technical requirements of the natural gas heater, the computer automatic control system for natural gas heater has been designed,and realizes the temperature and liquid level real time measurement and control. The system increases significantly the control accuracy of natural gas temperature, eliminates potential unsafety and improves production efficiency.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Xiaoxiao Meng ◽  
Wei Zhou ◽  
Emad Rokni ◽  
Honghua Zhao ◽  
Rui Sun ◽  
...  

This research investigated the effects of the specific primary (under-fire) air flowrate (m˙air) on the combustion behavior of a 50–50 wt % blend of raw corn straw (CS) and raw pinewood wastes in a fixed-bed reactor. This parameter was varied in the range of 0.079–0.226 kg m−2 s−1, which changed the overall combustion stoichiometry from air-lean (excess air coefficient λ = 0.73) to air-rich (excess air coefficient λ = 1.25) and affected the combustion efficiency and stability as well as the emissions of hazardous pollutants. It was observed that by increasing m˙air, the ignition delay time first increased and then decreased, the average bed temperatures increased, both the average flame propagation rates and the fuel burning rates increased, and the combustion efficiencies also increased. The emissions of CO as well as those of cumulative gas phase nitrogen compounds increased, the latter mostly because of increasing HCN, while those of NO were rather constant. The emissions of HCl decreased but those of other chlorine-containing species increased. The effect of m˙air on the conversion of sulfur to SO2 was minor. By considering all of the aforesaid factors, a mildly overall air-rich (fuel-lean) (λ = 1.04) operating condition can be suggested for corn-straw/pinewood burning fixed-bed grate-fired reactors.


2005 ◽  
Vol 9 (2) ◽  
pp. 45-55
Author(s):  
Vladan Ivanovic

The calculation of the furnace in the industrial and power boilers is the most important and the most responsible part of the thermal calculation, and it has important influence on the rationalization of energy consumption. In the paper one-dimensional zonal method of the furnace thermal calculation of steam boilers is presented. It can successfully define disposition of flue gas temperature and specific thermal load of screen walls with height of the furnace in case of uneven deposits distribution which vary in size and quality. Its greatest use is for comparing furnace performance under various operating conditions.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8130
Author(s):  
Ziwen Dong ◽  
Liting Zhang ◽  
Yongwen Yang ◽  
Qifen Li ◽  
Hao Huang

Stratified air distribution systems are commonly used in large space buildings. The research on the airflow organization of stratified air conditioners is deficient in terms of the analysis of multivariable factors. Moreover, studies on the coupled operation of stratified air conditioners and natural ventilation are few. In this paper, taking a Shanghai Airport Terminal departure hall for the study, air distribution and thermal comfort of the cross-section at a height of 1.6 m are simulated and compared under different working conditions, and the effect of natural ventilation coupling operation is studied. The results show that the air distribution is the most uniform and the thermal comfort is the best (predicted mean vote is 0.428, predicted percentage of dissatisfaction is 15.2%) when the working conditions are 5.9% air supply speed, 11 °C cooling temperature difference and 0° air supply angle. With the coupled operation of natural ventilation, the thermal comfort can be improved from Grade II to Grade I.


Sign in / Sign up

Export Citation Format

Share Document