Unsteady Deformation and Internal Circulation of a Liquid Drop in a Zero Gravity Uniform Flow

1999 ◽  
Vol 121 (3) ◽  
pp. 665-672 ◽  
Author(s):  
Mohammad Farshchi ◽  
Mohammad Hassan Rahimian

Numerical simulation of the internal and external flow fields of a liquid drop moving in the surrounding gas are considered. The present work is concerned with the time accurate numerical solution of a two phase flow field at the low Mach number limit with an appropriate volume tracking method to capture motion and deformation of a liquid drop. In particular, deformation of a liquid drop moving with a coflowing gas stream in a zero gravity field is simulated. The effects of the gas flow Reynolds number and drop Weber number on the deformation dynamics of the drop have been investigated. There appears to be a critical gas stream Reynolds number, at moderate drop Weber numbers, below which the coflowing drop takes on an oblate cap shape and above which it forms an arrow head shape. It has been shown that an observer moving with the average velocity of the liquid drop sees interesting recirculatory flow patterns inside the drop.

2020 ◽  
Author(s):  
Sabrina Kalenko ◽  
Alexander Liberzon

Metal particles in solid propellants enhance rocket engines performance. An interaction of particles with a high Reynolds number turbulent gas flow accelerating to a nozzle, has not been characterized thoroughly. We study the particle-turbulence interactions in a two-dimensional model of a rocket engine. Two-phase particle image/tracking velocimetry provides the flow velocity simultaneously with the velocities of irregularly shaped inertial particles ($d_p \sim 350 \mu$m, Stokes $St \sim 70$, particle Reynolds number $Re_p \sim 300$). We reveal the local augmentation of turbulent fluctuations in the particle wakes (up to 5 particle diameters downstream the particle). Despite the low mass fraction, the large response time of the particles leads to an increase of turbulent kinetic energy (TKE) everywhere in the chamber. The increase of local particle mass fraction near the nozzle, due to the mass conservation and converging streamlines, compensates for the dampening effect of the strong mean flow acceleration and further augments TKE at the nozzle inlet. Furthermore, this is accompanied by unexpectedly isotropic fluctuations in the proximity of the nozzle. The phenomenon of the isotropic, strongly enhanced turbulence in the proximity of the engine nozzle achievable with the low mass fraction of high $St,Re_p$ particles, can be used to improve the design of solid propellant rocket engines.


Author(s):  
Dohwan Kim ◽  
Matthew J. Rau

Abstract Small tubes and fins have long been used as methods to increase surface area for convective heat transfer in single-phase flow applications. As demands for high heat transfer effectiveness has increased, implementing evaporative phase-change heat transfer in conjunction with small fins, tubes, and surface structures in advanced heat exchanger and heat sink designs has become increasingly attractive. The complex two-phase flow that results from these configurations is poorly understood, particularly in how the gas phase interacts with the flow structure of the wake created by these bluff bodies. An experimental study of liquid-gas bubbly flow around a cylinder was performed to understand these complex flow physics. A 9.5 mm diameter cylinder was installed horizontally within a vertical water channel facility. A high-speed camera captured the movement of the liquid-gas mixture around the cylinder for a range of bubble sizes. Liquid Reynolds number, calculated based on the cylinder diameter, was varied approximately from 100 to 3000. Time-averaged probability of bubble presence was calculated to characterize the cylinder wake and its effects on the bubble motion. The influence of the liquid Reynolds number, superficial air velocity, and bubble size is discussed in the context of the observed two-phase flow patterns.


2013 ◽  
Vol 20 (8) ◽  
pp. 083513 ◽  
Author(s):  
Dong Jun Jin ◽  
Han S. Uhm ◽  
Guangsup Cho

Author(s):  
Binglu Ruan ◽  
Huan Li ◽  
Qiuwang Wang

In falling–film type of heat exchangers, gas/vapor usually exists, and its effect on falling-film mode transitions and heat transfer could not be neglected. It could impact the film thickness, which is an important parameter to determine the thin-film heat transfer performance, or even destroy falling-film modes and significantly deteriorate the heat transfer. However, there have been very few studies of countercurrent gas flow effects on the film thickness. In this paper, the falling-film film thickness with and without liquid-gas interfacial shear stress due to the countercurrent gas flow was studied. A two-phase empirical correlation is used to solve the momentum equation. Calculation results were compared with available experimental data in literatures for validation. Reasonable agreement was achieved. Thus, the two-phase correlation for predicting shear stress of a thin film flow inside a vertical rectangular channel has been extended to a new type of flow. Effects of film Reynolds number, gas velocity, and gas-channel equivalent hydraulic diameter on the film thickness were studied. It is shown that the countercurrent gas flow thickened the falling film. The increased film thickness can shift the mode transitional Reynolds number and reduce the heat transfer coefficient, corroborating the conjecture in our earlier work.


2003 ◽  
Vol 3 ◽  
pp. 266-270
Author(s):  
B.H. Khudjuyerov ◽  
I.A. Chuliev

The problem of the stability of a two-phase flow is considered. The solution of the stability equations is performed by the spectral method using polynomials of Chebyshev. A decrease in the stability region gas flow with the addition of particles of the solid phase. The analysis influence on the stability characteristic of Stokes and Archimedes forces.


1986 ◽  
Vol 51 (5) ◽  
pp. 1001-1015 ◽  
Author(s):  
Ivan Fořt ◽  
Vladimír Rogalewicz ◽  
Miroslav Richter

The study describes simulation of the motion of bubbles in gas, dispersed by a mechanical impeller in a turbulent low-viscosity liquid flow. The model employs the Monte Carlo method and it is based both on the knowledge of the mean velocity field of mixed liquid (mean motion) and of the spatial distribution of turbulence intensity ( fluctuating motion) in the investigated system - a cylindrical tank with radial baffles at the wall and with a standard (Rushton) turbine impeller in the vessel axis. Motion of the liquid is then superimposed with that of the bubbles in a still environment (ascending motion). The computation of the simulation includes determination of the spatial distribution of the gas holds-up (volumetric concentrations) in the agitated charge as well as of the total gas hold-up system depending on the impeller size and its frequency of revolutions, on the volumetric gas flow rate and the physical properties of gas and liquid. As model parameters, both liquid velocity field and normal gas bubbles distribution characteristics are considered, assuming that the bubbles in the system do not coalesce.


Author(s):  
Yuan Hu ◽  
Quanhua Sun ◽  
Jing Fan

Gas flow over a micro cylinder is simulated using both a compressible Navier-Stokes solver and a hybrid continuum/particle approach. The micro cylinder flow has low Reynolds number because of the small length scale and the low speed, which also indicates that the rarefied gas effect exists in the flow. A cylinder having a diameter of 20 microns is simulated under several flow conditions where the Reynolds number ranges from 2 to 50 and the Mach number varies from 0.1 to 0.8. It is found that the low Reynolds number flow can be compressible even when the Mach number is less than 0.3, and the drag coefficient of the cylinder increases when the Reynolds number decreases. The compressible effect will increase the pressure drag coefficient although the friction coefficient remains nearly unchanged. The rarefied gas effect will reduce both the friction and pressure drag coefficients, and the vortex in the flow may be shrunk or even disappear.


2008 ◽  
Vol 273-276 ◽  
pp. 679-684
Author(s):  
Roberto Parreiras Tavares ◽  
André Afonso Nascimento ◽  
Henrique Loures Vale Pujatti

The RH process is a secondary refining process that can simultaneously attain significant levels of removal of interstitial elements, such as carbon, nitrogen and hydrogen, from liquid steel. In the RH process, the decarburization rate plays a very important role in determining the productivity of the equipment. The kinetics of this reaction is controlled by mass transfer in the liquid phase. In the present work, a physical model of a RH degasser has been built and used in the study of the kinetics of decarburization. The effects of the gas flow rate and of the configurations of the nozzles used in the injection of the gas have been analyzed. The decarburization reaction of liquid steel was simulated using a reaction involving CO2 and caustic solutions. The concentration of CO2 in the solution was evaluated using pH measurements. Based on the experimental results, it was possible to estimate the reaction rate constant. A volumetric mass transfer coefficient was then calculated based on these rate constants and on the circulation rate of the liquid. The logarithm of the mass transfer coefficient showed a linear relationship with the logarithm of the gas flow rate. The slope of the line was found to vary according to the relevance of the reaction at the free surface in the vacuum chamber. A linear relationship between the volumetric mass transfer coefficient and the nozzle Reynolds number was also observed. The slopes of the lines changed according to the relative importance of the two reaction sites, gas-liquid interface in the upleg snorkel and in the vacuum. At higher Reynolds number, the reaction in the vacuum chamber tends to be more significant.


1980 ◽  
Vol 102 (1) ◽  
pp. 8-22 ◽  
Author(s):  
A. M. Hecht ◽  
H. Yeh ◽  
S. M. K. Chung

Collapse of arteries subjected to a band of hydrostatic pressure of finite length is analyzed. The vessel is treated as a long, thin, linearly elastic, orthotropic cylindrical shell, homogeneous in composition, and with negligible radial stresses. Blood in the vessel is treated as a Newtonian fluid and the Reynolds number is of order 1. Results are obtained for effects of the following factors on arterial collapse: intraluminal pressure, length of the pressure band, elastic properties of the vessel, initial stress both longitudinally and circumferentially, blood flow Reynolds number, compressibility, and wall thickness to radius ratio. It is found that the predominant parameter influencing vessel collapse for the intermediate range of vessel size and blood flow Reynolds numbers studied is the preconstricted intraluminal pressure. For pressure bands less than about 10 vessel radii the collapse pressure increases sharply with increasing intraluminal pressure. Initial axial prestress is found to be highly stabilizing for small band lengths. The effects of fluid flow are found to be small for pressure bands of less than 100 vessel radii. No dramatic orthotropic vessel behavior is apparent. The analysis shows that any reduction in intraluminal pressure, such as that produced by an upstream obstruction, will significantly lower the required collapse pressure. Medical implications of this analysis to Legg-Perthes disease are discussed.


2013 ◽  
Author(s):  
Sung Chan Cho ◽  
Yun Wang

In this paper, two-phase flow dynamics in a micro channel with various wall conditions are both experimentally and theoretically investigated. Annulus, wavy and slug flow patterns are observed and location of liquid phase on different wall condition is visualized. The impact of flow structure on two-phase pressure drop is explained. Two-phase pressure drop is compared to a two-fluid model with relative permeability correlation. Optimization of correlation is conducted for each experimental case and theoretical solution for the flows in a circular channel is developed for annulus flow pattern showing a good match with experimental data in homogeneous channel case.


Sign in / Sign up

Export Citation Format

Share Document