The Impact of a Sphere on a Timoshenko Thin-Walled Beam of Open Section With due Account for Middle Surface Extension

1999 ◽  
Vol 121 (4) ◽  
pp. 375-383 ◽  
Author(s):  
Yu. A. Rossikhin ◽  
M. V. Shitikova

The problem on the normal impact of an elastic sphere upon an elastic Timoshenko arbitrary cross section thin-walled beam of open section is considered. The process of impact is accompanied by the dynamic flexure and torsion of the beam, resulting in the propagation of plane flexural-warping and torsional-shear waves of strong discontinuity along the beam axis. In addition, the process of impact is accompanied by large transverse deformations and large deflection of the beam in the place of impact, with the consequent generation of longitudinal shock waves and large membrane contractive (tensile) forces. Behind the wave fronts up to the boundaries of the contact region (the beam part with the contact spot), the solution is constructed in terms of one-term ray expansions. During the impact, the sphere moves under the action of the contact force which is determined due to the Hertz’s theory, but the contact region moves under the attraction of the contact force, as well as the twisting and bending-torsional moments and transverse and membrane forces, which are applied to the lateral surfaces of the contact region. Simultaneous consideration of the equations of sphere and the contact region motion leads to the Abel equation of the second kind, wherein the value characterizing the sphere and beam drawing together and the rate of change of this value are used as the independent variable and the function, respectively. The solution to the Abel equation written in the form of a series allows one to determine all characteristics of the shock interaction of the sphere and beam.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yury A. Rossikhin ◽  
Marina V. Shitikova ◽  
Phan Thanh Trung

In the present paper, the problem on impact of a viscoelastic sphere against a viscoelastic plate is considered with due account for the extension of plate’s middle surface and local bearing of sphere and plate’s materials via the Hertz theory. The standard linear solid models with conventional derivatives and with fractional-order derivatives are used as viscoelastic models, respectively, outside and within the contact domain. As a result of impact, transient waves (surfaces of strong discontinuity) are generated in the plate, behind the wave fronts of which up to the boundaries of the contact domain the solution is constructed in terms of one-term ray expansions due to short-time duration of the impact process. The motion of the contact zone occurs under the action of extension forces acting in the plate’s middle surface, transverse force, and the Hertzian contact force. The suggested approach allows one to find the time-dependence of the impactor’s indentation into the target and the Hertzian contact force.


Gerontology ◽  
2021 ◽  
pp. 1-14
Author(s):  
Ahmed Ghachem ◽  
Frédérik Dufour ◽  
Tamas Fülöp ◽  
Pierrette Gaudreau ◽  
Alan A. Cohen

<b><i>Background:</i></b> Age-related changes in biological processes such as physiological dysregulation (the progressive loss of homeostatic capacity) vary considerably among older adults and may influence health profiles in late life. These differences could be related, at least in part, to the impact of intrinsic and extrinsic factors such as sex and physical activity level (PAL). <b><i>Objectives:</i></b> The objectives of this study were (1) to assess the magnitude and rate of changes in physiologi­cal dysregulation in men and women according to PAL and (2) to determine whether/how sex and PAL mediate the apparent influence of physiological dysregulation on health outcomes (frailty and mortality). <b><i>Methods:</i></b> We used data on 1,754 community-dwelling older adults (age = 74.4 ± 4.2 years; women = 52.4%) of the Quebec NuAge cohort study. Physiological dysregulation was calculated based on Mahalanobis distance of 31 biomarkers regrouped into 5 systems: oxygen transport, liver/kidney function, leukopoiesis, micronutrients, and lipids. <b><i>Results:</i></b> As expected, mean physiological dysregulation significantly increased with age while PAL decreased. For the same age and PAL, men showed higher levels of physiological dysregulation globally in 3 systems: oxygen transport, liver/kidney function, and leukopoiesis. Men also showed faster global physiological dysregulation in the liver/kidney and leukopoiesis systems. Overall, high PAL was associated with lower level and slower rate of change of physiological dysregulation. Finally, while mortality and frailty risk significantly increased with physiological dysregulation, there was no evidence for differences in these effects between sexes and PAL. <b><i>Conclusion:</i></b> Our results showed that both sex and PAL have a significant effect on physiological dysregulation levels and rates of change. Also, although a higher PAL was associated with lower level and slower rate of change of physiological dysregulation, there was no evidence that PAL attenuates the effect of physiological dysregulation on subsequent declines in health at the end of life. Substantial work remains to understand how modifiable behaviors impact the relationship between physiological dysregulation, frailty, and mortality in men and women.


2021 ◽  
Vol 121 (4) ◽  
pp. 1207-1218
Author(s):  
Josh T. Arnold ◽  
Stephen J. Bailey ◽  
Simon G. Hodder ◽  
Naoto Fujii ◽  
Alex B. Lloyd

Abstract Purpose This study assessed the impact of normobaric hypoxia and acute nitrate ingestion on shivering thermogenesis, cutaneous vascular control, and thermometrics in response to cold stress. Method Eleven male volunteers underwent passive cooling at 10 °C air temperature across four conditions: (1) normoxia with placebo ingestion, (2) hypoxia (0.130 FiO2) with placebo ingestion, (3) normoxia with 13 mmol nitrate ingestion, and (4) hypoxia with nitrate ingestion. Physiological metrics were assessed as a rate of change over 45 min to determine heat loss, and at the point of shivering onset to determine the thermogenic thermoeffector threshold. Result Independently, hypoxia expedited shivering onset time (p = 0.05) due to a faster cooling rate as opposed to a change in central thermoeffector thresholds. Specifically, compared to normoxia, hypoxia increased skin blood flow (p = 0.02), leading to an increased core-cooling rate (p = 0.04) and delta change in rectal temperature (p = 0.03) over 45 min, yet the same rectal temperature at shivering onset (p = 0.9). Independently, nitrate ingestion delayed shivering onset time (p = 0.01), mediated by a change in central thermoeffector thresholds, independent of changes in peripheral heat exchange. Specifically, compared to placebo ingestion, no difference was observed in skin blood flow (p = 0.5), core-cooling rate (p = 0.5), or delta change in rectal temperature (p = 0.7) over 45 min, while nitrate reduced rectal temperature at shivering onset (p = 0.04). No interaction was observed between hypoxia and nitrate ingestion. Conclusion These data improve our understanding of how hypoxia and nitric oxide modulate cold thermoregulation.


Author(s):  
Jianxun Du ◽  
Peng Hao ◽  
Mabao Liu ◽  
Rui Xue ◽  
Lin’an Li

Because of the advantages of light weight, small size, and good maneuverability, the bio-inspired micro aerial vehicle has a wide range of application prospects and development potential in military and civil areas, and has become one of the research hotspots in the future aviation field. The beetle’s elytra possess high strength and provide the protection of the abdomen while being functional to guarantee its flight performance. In this study, the internal microstructure of beetle’s elytra was observed by scanning electron microscope (SEM), and a variety of bionic thin-walled structures were proposed and modelled. The energy absorption characteristics and protective performance of different configurations of thin-walled structures with hollow columns under impact loading was analyzed by finite element method. The parameter study was carried out to show the influence of the velocity of impactor, the impact angle of the impactor and the wall thickness of honeycomb structure. This study provides an important inspiration for the design of the protective structure of the micro aerial vehicle.


Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.


1972 ◽  
Vol 39 (3) ◽  
pp. 779-785 ◽  
Author(s):  
A. I. Soler

Equations of motion are derived for coupled extension, flexure, and torsion of pretwisted curved bars of thin-walled, open section. The derivation is based on energy principles and includes inertia terms. The major effect of initial pretwist is to allow coupling of all possible beam deformation modes; however, if the bar is straight and has two axes of symmetry, pretwist causes coupling only between the two bending modes, and between extension and torsion. The governing equations are presented in first-order form, and a numerical technique is suggested for the case of space varying pretwist. It is suggested that these equations may form the basis for a simplified study of the effect of superelevation on the static and dynamic response of curved highway bridges. Finally, a simple straight beam with uniform pretwist is studied to compare effects of pretwist and restrained torsion in a thin-walled beam of open section.


1994 ◽  
Vol 116 (4) ◽  
pp. 500-507 ◽  
Author(s):  
E. C. DeMeter

Spherical-tipped locators and clamps are often used for the restraint of castings during machining. For structurally rigid castings, contact region deformation and micro-slippage are the predominant modes of workpiece displacement. In turn contact region deformation and micro-slippage are heavily influenced by contact region loading. This paper presents a linear model for predicting the impact of locator and clamp placement on workpiece displacement throughout a series of machining operations. It illustrates how the continuum of external loads exerted on a workpiece during machining can be bounded within a convex hull, and how the extreme points of this hull are used within the model. Finally it describes the simulation experiments which were used for model validation.


Author(s):  
Kuahai Yu ◽  
Danesh Tafti

Sand ingestion and deposition in gas turbine engine components can lead to several operational hazards. This paper discusses a physics based model for modeling the impact and deposition of sand particles. The collision model divides the impact process into three stages, the elastic stage, the elastic-plastic stage, and full plastic stage. The recovery stage is assumed to be fully elastic. The contact force, contact radius and work of contact force are conformed to the Hertzian theory, using “Young’s modulus similarity” rule to predict the recovery displacement. The adhesion loss in the recovery stage is considered using Dunn’s model, which describes the adhesion force as an idealized line force with the contact radius. The validation case of steel spherical particle impact on a glass surface with the maximum Stokes number of 10000, shows that the adhesion model with elastoplastic impact model describes the experimental result well. When the Stokes number is less than 12, the particle deposits on the surface. Sand properties are characterized by size and temperature dependencies. Model predictions for particle sizes ranging from 0.5 to 50 micron, impact velocities up to 80 m/s, and temperatures above 1300 K are given and discussed. It is shown that both size and temperature have an effect on the deposition characteristics.


Abacus ◽  
2002 ◽  
Vol 38 (2) ◽  
pp. 177-199 ◽  
Author(s):  
Vivien Beattie ◽  
Michael John Jones
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document