Indentation Method to Measure Plating Ductility

1990 ◽  
Vol 112 (3) ◽  
pp. 272-277 ◽  
Author(s):  
P. A. Engel ◽  
D. L. Questad

The ductility of a plating is an important measure of its durability. In the present paper an indentation test for thin platings is introduced. The test is based on the fact that tensile radial strains arising at the rim of the indentation crater tend to cause cracks in a material of insufficient ductility. By a quantitative knowledge of the radial strain the ductility – i.e., ultimate strain – of the material can be determined. We use a simple geometric analysis which assumes no tangential displacement in the contact area to determine the “average radial strain” across the indentation. In the experiments sharp conical indenters (typically having a 60 degree cone angle with a 0.025 mm (0.001 in.) tip radius) are used, and the plastically deformed crater is checked by electron microscopy (SEM) for cracks. If a crack is detected, its depth is further checked by an attendant X-ray procedure (EDX) for the presence of the underlying substrate material. If a “through-crack” is found, then the ductility of the plating has been exceeded; i.e., the ductility will be equated with the strain value measured for the last indenter loading not involving a crack.

2012 ◽  
Vol 490-495 ◽  
pp. 3486-3490
Author(s):  
Qiang Yu ◽  
Zhen Chen ◽  
Zhong Cheng Guo

In order to prepare a new type of anode material, stainless steel was selected as substrate material. The β-PbO2 coating on stainless steel substrate was prepared under the appropriate plating solution, and the PbO2-MnO2 coating was prepared with thermal decomposition. The crystal structure was determined by X-ray diffraction; Surface morphology was test by Scanning Electron Microscopy; the energy spectrum was used to determine element mass-fraction and the ratio of atomic number of the coatings.


Author(s):  
A. L. Kastengren ◽  
C. F. Powell ◽  
K.-S. Im ◽  
Y.-J. Wang ◽  
J. Wang

The near-nozzle structure of several nonevaporating biodiesel-blend sprays has been studied using X-ray radiography. Radiography allows quantitative measurements of the fuel distribution in sprays to be made with high temporal and spatial resolution. Measurements have been made at different values of injection pressure, ambient density, and with two different nozzle geometries to understand the influences of these parameters on the spray structure of the biodiesel blend. These measurements have been compared with corresponding measurements of Viscor, a diesel calibration fluid, to demonstrate the fuel effects on the spray structure. Generally, the biodiesel-blend spray has a similar structure to the spray of Viscor. For the nonhydroground nozzle used in this study, the biodiesel-blend spray has a slightly slower penetration into the ambient gas than the Viscor spray. The cone angle of the biodiesel-blend spray is generally smaller than that of the Viscor spray, indicating that the biodiesel-blend spray is denser than the Viscor spray. For the hydroground nozzle, both fuels produce sprays with initially wide cone angles that transition to narrow sprays during the steady-state portion of the injection event. These variations in cone angle with time occur later for the biodiesel-blend spray than for the Viscor spray, indicating that the dynamics of the injector needle as it opens are somewhat different for the two fuels.


2014 ◽  
Vol 989-994 ◽  
pp. 883-886
Author(s):  
Huan Xue ◽  
Rong Feng Li ◽  
Li Yu ◽  
Dong Liu ◽  
Wen Jie Peng

The residual stress on X groove welding plate of high performance bridge steel 4MnNbq is analyzed. The X-ray diffraction method, hole drilling method and indentation method are respectively used to test the residual stress on welding line, heat-affected zone and base metal. The longitudinal and transversal residual stress are analyzed and compared. The results show that the stress along welding line direction is far larger than the transversal one and the stress on base metal are comparatively smaller than the welding line. The testing results of three methods match well, while the results of X-ray method and hole drilling method are much closer, the relative error of indentation method is comparatively larger.


1992 ◽  
Vol 281 ◽  
Author(s):  
F. Santiago ◽  
D. Woody ◽  
T. K. Chu ◽  
C. A. Huber

ABSTRACTA new substrate material consisting of a buffer layer of a Ba-Si compound was developed by making use of the chemical reaction between BaF2 and Si. This substrate is very promising for the integration of IV-VI semiconductor materials with silicon. PbTe films of excellent quality, as determined by X-ray and Reflected High Energy Electron Diffraction spectra, have been deposited over (111)- and (100)-oriented silicon wafers of 3 inch diameter. These PbTe films are (100)-oriented irrespective of the Si orientation. X-ray photoelectron spectroscopy studies reveal very interesting chemistry at the interface between Ba-Si and Te. They suggest that BaTe may form between PbTe and Ba-Si at their interface. This interfacial region, which is of the order of only a few molecular layers, appears to be critical in the success of the deposition. Thermal cycling showed that the PbTe/BaSi/Si system is mechanically very stable. The possibility of a similar growth mechanism for the deposition of II-VI semiconductors such as CdTe is considered.


2017 ◽  
Vol 17 (4) ◽  
pp. 195-199 ◽  
Author(s):  
R. Mola ◽  
E. Stępień ◽  
M. Cieślik

AbstractThe modified surface layers of Mg enriched with Al and Si were fabricated by thermochemical treatment. The substrate material in contact with an Al + 20 wt.% Si powder mixture was heated to 445°C for 40 or 60 min. The microstructure of the layers was examined by OM and SEM. The chemical composition of the layer and the distribution of elements were determined by energy dispersive X-ray spectroscopy (EDS). The experimental results show that the thickness of the layer is dependent on the heating time. A much thicker layer (1 mm) was obtained when the heating time was 60 min than when it was 40 min (600 μm). Both layers had a non-homogeneous structure. In the area closest to the Mg substrate, a thin zone of a solid solution of Al in Mg was detected. It was followed by a eutectic with Mg17Al12and a solid solution of Al in Mg. The next zone was a eutectic with agglomerates of Mg2Si phase particles; this three-phase structure was the thickest. Finally, the area closest to the surface was characterized by dendrites of the Mg17Al12phase. The microhardness of the modified layer increased to 121-236 HV as compared with 33-35 HV reported for the Mg substrate.


1981 ◽  
Vol 25 ◽  
pp. 365-371
Author(s):  
Glen A. Stone

This paper presents a new method to measure the thickness of very thin films on a substrate material using energy dispersive x-ray diffractometry. The method can be used for many film-substrate combinations. The specific application to be presented is the measurement of phosphosilicate glass films on single crystal silicon wafers.


Author(s):  
Lorenzo Nocivelli ◽  
Anqi Zhang ◽  
Brandon A. Sforzo ◽  
Aniket Tekawade ◽  
Alexander K. Voice ◽  
...  

Abstract The differences between a center-mounted and a side-mounted injector for gasoline direct injection (GDI) applications are analyzed through computational fluid dynamics (CFD). The Engine Combustion Network’s (ECN) axisymmetric 8-hole Spray G injector is compared to a 6-hole injector designed to be side-mounted in an engine. Nozzle-flow simulations are carried out with the commercial CFD software CONVERGE, injecting Euro 5 certification gasoline into a constant volume chamber. Low-load operating conditions are targeted, setting the injection pressure at 50 bar and the ambient pressure to be representative of very early pilot injections. The phase change is handled with the Homogeneous Relaxation Model (HRM), which is assessed and adapted to gasoline flash-boiling conditions. The simulation domains are generated leveraging real injector internal geometries obtained by micron-resolution X-ray tomographic measurements, which introduce manufacturing tolerances and surface roughness in the computational study. Steady needle lift conditions are analyzed. The near-field fuel density distributions and plume morphologies are evaluated, validated and compared to X-ray radiography measurements. A computational best practice is defined and single plume characteristics and variability trends are highlighted as functions of the geometry of the orifices. The plume-plume interaction dynamics are identified and assessed, underlining differences from center- to side-mounted injectors at strong flashing conditions. The obtained numerical framework allows the identification of near-nozzle injection characteristics such as single plume direction, cone angle, spray initial velocity and spatial fuel density distribution. The presented results represent a unique dataset for the initialization of more-affordable Lagrangian spray models, which differentiate the behavior of side-mounted and center-mounted injectors.


Author(s):  
John S. Morse ◽  
C. Russ Rasnic

Extension ladder accidents injure thousands of people each year in the U.S. One cause of these accidents is false lock of the flylocks. Flylocks are the devices that support the upper or fly section of an extended ladder. False locked flylocks are not fully locked, but nevertheless support a load. False lock is not stable and may release under disturbance of the ladder, e.g. from climbing. False lock modes include tiplock, flipperlock, and camlock. If a false lock releases the ladder will telescope, and may cause serious injury. One false lock mode is tiplock, where the tip of the flylock is resting on the rung of the ladder in a metastable position. The tiplock may be held in place by mechanical locking, or by friction between the tip and the rung. Tiplock may occur when the ladder is being extended and the fly section is not raised enough to fully engage the flylocks. Ladder labels usually instruct “Securely engage ladder locks before climbing,” but typically do not instuct a user how to do this. Ladder users employ various methods to securely engage flylocks. These methods do not always prevent false lock. No gravity or spring actuated flylock design is known which will completely eliminate tiplock, but various designs have different ranges of fly section travel over which tiplock can occur (tiplock “window”). A mathematical expression defines the conditions under which friction tiplock can occur. Two methods of evaluating the tiplock window are discussed: geometric analysis and physical measurement. Tiplock propensity during random ladder extension is calculated. A geometric analysis is made of two flylocks with different tip radii. The flylock with the smaller tip radius is observed to have a smaller tiplock window.


Author(s):  
John M. Boone ◽  
Amy E. Becker ◽  
Andrew M. Hernandez ◽  
James T. Dobbins ◽  
Paul Schwoebelc
Keyword(s):  
X Ray ◽  

2017 ◽  
Vol 270 ◽  
pp. 118-123
Author(s):  
Michaela Remešová ◽  
Lenka Klakurková ◽  
Ivana Ročňáková ◽  
Ladislav Čelko ◽  
Lucie Páleníková ◽  
...  

The paper is focused on the metallographic analysis of spray paint films with defects. The painting has two important roles. Firstly, it protects the substrate material (ferrous, nonferrous and plastic) and secondly, it improves the appearance of the surface. Appearance and quality of painting film play an important role in the industry (automotive, aerospace, consumer electronics, etc.). Defects of spray painting film, which have a negative effect on the appearance of the product, can be detected and further analysed by common methods used in metallography. Such methods are very effective tool for revealing the cause of defects and their elimination within the technological process (degreasing, cleaning, pickling, drying, technological discipline, etc.). In this paper, defects were characterized by high-resolution digital microscope (LM) and scanning electron microscope (SEM) equipped with energy dispersive X-ray analyser (EDX).


Sign in / Sign up

Export Citation Format

Share Document