Friction and Wear Behavior of Graphite-Carbon Short Fiber Reinforced Al–17%Si Alloy Hybrid Composites

2008 ◽  
Vol 131 (1) ◽  
Author(s):  
C. S. Ramesh ◽  
T. B. Prasad

Graphite and carbon short fiber (copper coated) reinforced (2 wt %) hypereutectic Al–17%Si alloy composites were prepared by liquid metallurgy route. Room temperature friction and wear properties of as-cast hypereutectic Al–Si alloy reinforced with copper coated graphite and short carbon fibers were investigated. Friction and wear tests were conducted using a pin-on-disk machine under dry sliding conditions. The loads (contact pressure) and sliding velocities have been varied from 10 N to 50 N (contact pressure of 0.12–0.60 MPa) and 0.3 m/s to 1.2 m/s, respectively. The results reveal that the coefficient of friction and the wear rate of the hybrid composite are lower than that of the matrix alloy. The coefficient of friction of the matrix alloy and its hybrid composite decreased with increased load of up to 30 N and increased beyond this load. The wear rates of both the matrix alloy and its hybrid composite increased with the increasing load. However, at all the loads and sliding velocities studied, the developed hybrid composite exhibited a lower coefficient of friction and wear rates when compared with the matrix alloy.

Author(s):  
C. S. Ramesh ◽  
T. B. Prasad

Graphite and carbon short fiber (Copper coated) reinforced (2 wt%) hypereutectic Al-17%Si alloy composites were prepared by liquid metallurgy route. Room temperature friction and wear properties of as cast hypereutectic Al-Si alloy reinforced with copper coated graphite and short carbon fibers were investigated both before and after heat-treatment. Friction and wear tests were conducted using a pin-on-disc machine under dry conditions. The loads were varied from 10 to 50N respectively. Results reveal that coefficient of friction and wear rate of the hybrid composite are lower than that of the matrix alloy in both heat treated and un-heat treated conditions. The coefficient of friction of the matrix alloy and its hybrid composite decreased with increased load up to 30N and increased beyond this load. The wear rates of both the matrix alloy and its hybrid composite increased with the increasing load. However at all the studied, the developed hybrid composite exhibited a lower coefficient of friction and wear rates when compared with the matrix alloy.


2010 ◽  
Vol 159 ◽  
pp. 338-341 ◽  
Author(s):  
C.S. Ramesh ◽  
R. Keshavamurthy ◽  
D. Vineela ◽  
R. Archana

This work focuses on the prediction of tribological behavior of cast Al6061-Si3N4 composites using ANN technique owing to its wide spread popularity in accurate predictions of material properties. The cast composites were developed by stir cast method and its tribological behavior were experimentally evaluated using a pin-on-disc tribometer adopting loads and sliding velocities ranging from 20-100N and 0.314-1.574m/s respectively. The predictions of coefficient of friction and wear rates of matrix alloy and the developed cast composites by ANN approach do agree very closely with the experimental data. Keywords: ANN, Composites, coefficient of friction, wear rates.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Kalyan Kumar Singh ◽  
Saurabh Singh ◽  
Anil Kumar Shrivastava

Friction and wear behavior of silicon carbide based aluminum metal matrix composite and aluminum matrix alloy have been studied for sliding speeds of 3.14 m/s and 3.77 m/s and load range from 10 N to 30 N under dry and lubricated environment, respectively. The experiments were performed on pin on disk tribometer (Make: DUCOM). The composite was fabricated by stir casting process and has several challenges like inferior bonds and interfacial reaction products which will deteriorate the mechanical and tribological properties. Therefore, addition of reactive metal like magnesium (Mg) should be done which will lead to reduced solidification shrinkage, lower tendency towards hot tearing, and faster process cycles. Results have revealed that the developed composites have lower coefficient of friction and wear rates when compared with aluminum matrix alloy under dry and lubricated environment. Experimental results show that under dry condition coefficient of friction of both the matrix alloy and the composite decreases with increase in load, whereas it increases with increase in sliding speeds; on the other hand wear rates of both aluminum matrix alloy and the composites increase with increase in load as well as with sliding speeds. FESEM of worn surfaces are also used to understand the wear mechanisms.


2011 ◽  
Vol 148-149 ◽  
pp. 612-615 ◽  
Author(s):  
Zhi Yong Cai ◽  
Wen Xia Wang

The tribological performance of pure polyamide 66 (PA66) and Carbon fibre (CF) reinforced PA66 composite were studied at dry sliding and oil lubricated conditions. The results show that the coefficient of friction and specific wear rates for pure PA66 and CF/PA66 composite slightly in increase with the increase in applied pressure values. On the other hand the coefficient of friction is in decrease while the specific wear is in increase with the increase in sliding speed values.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1336
Author(s):  
Jorge Caessa ◽  
Todor Vuchkov ◽  
Talha Bin Yaqub ◽  
Albano Cavaleiro

Friction and wear contribute to high energetic losses that reduce the efficiency of mechanical systems. However, carbon alloyed transition metal dichalcogenide (TMD-C) coatings possess low friction coefficients in diverse environments and can self-adapt to various sliding conditions. Hence, in this investigation, a semi-industrial magnetron sputtering device, operated in direct current mode (DC), is utilized to deposit several molybdenum-selenium-carbon (Mo-Se-C) coatings with a carbon content up to 60 atomic % (at. %). Then, the carbon content influence on the final properties of the films is analysed using several structural, mechanical and tribological characterization techniques. With an increasing carbon content in the Mo-Se-C films, lower Se/Mo ratio, porosity and roughness appeared, while the hardness and compactness increased. Pin-on-disk (POD) experiments performed in humid air disclosed that the Mo-Se-C vs. nitrile butadiene rubber (NBR) friction is higher than Mo-Se-C vs. steel friction, and the coefficient of friction (CoF) is higher at 25 °C than at 200 °C, for both steel and NBR countersurfaces. In terms of wear, the Mo-Se-C coatings with 51 at. % C showed the lowest specific wear rates of all carbon content films when sliding against steel. The study shows the potential of TMD-based coatings for friction and wear reduction sliding against rubber.


2012 ◽  
Vol 32 (3) ◽  
Author(s):  
Huseyin Unal ◽  
Mehmet Kurt ◽  
Abdullah Mimaroglu

Abstract Polyamide-imide (PAI) polymer is a high-temperature resistant polymer, which is used as contact breaker material because of its high electrical insulation property. The working conditions of contact breakers arise from the wear and friction problem conditions of these materials. Therefore, the tribological behavior of PAI polymer is important. In this study, the friction and wear performance of pure PAI polymer and PAI composite [PAI+12% graphite+3% polytetrafluoroethylene (PTFE)] were studied in two different cooling environmental conditions (with and without air cooling). Wear tests were carried out with the configuration of a polymer pin, on a rotating AISI 316 L stainless steel disc. Test conditions were atmospheric conditions, 50 N, 100 N, and 150 N loads and 0.5, 1.0, 2.0 and 3.0 m/s sliding speeds. For sliding without air cooling and sliding with air cooling, the results show that the coefficient of friction and wear rates for pure PAI and PAI+12% graphite+3% PTFE composite, slightly decrease and increase with the increase in applied load and sliding speed values, respectively. In addition, for the range of loads and sliding speeds of this study, low coefficients of friction and high specific wear rates are registered at sliding under air cooling conditions. Finally, the wear mechanism includes adhesive and abrasive processes.


2016 ◽  
Vol 852 ◽  
pp. 411-415
Author(s):  
T. Narendiranath Babu ◽  
Prasham Jain ◽  
Bipin Kumar Sharma

In recent years, both industrial and academic world are focussing their attention towards the development of sustainable composites, reinforced with fibres. In particular, among the fibres that can be used as reinforcement, the uniaxial glass fiber ones represent the most interesting for their properties. The aim of this work is to illustrate the results of friction and wear behaviour of uniaxial glass fibers with silicon carbide, aluminium oxide and graphite as the fillers. Moreover, its main manufacturing technologies have been described. The major component of these hybrid composite is uniaxial glass fibre with Epoxy LY556 (Resin). Hardener HY951 is used for hardening and support. Resin + Hardener are mixed in the ratio 10:1 and the mixture made up is called Matrix. Test materials of glass Fibre with varying compositions of 15% Al2O3 + SiC and glass fibre with varying compositions of 15% Graphite + SiC have been prepared by applying the matrix on glass cloth which is wrapped around the mandrel. The samples were tested in a pin-on-disc machine to determine the friction and wear losses. Further, the samples were tested on a pin-on-disc machine and frictional characteristics were monitored by varying speed and loads. Thus, the friction and wear characteristics have also been found out for the two specimens. From the experimental test results, it is observed that Al2O3 +Sic exihibits lower wear loss than SiC + Graphite under dry sliding conditions. Based on the observations, this hybrid composite are recommended to the manufacturing of the aircraft structures.


Author(s):  
Takashi Nogi

Some tribological properties of an ionic liquid were investigated by using a pin-on-disc friction and wear tester. Due to running-in, the coefficient of friction of the ionic liquid decreased with time to a very low value of 0.02 which suggests that the lubrication regime was hydrodynamic at the end of the tests. Anti-wear performance of the ionic liquid was substantially comparable to a paraffin-based oil.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1589 ◽  
Author(s):  
Mazin Tahir ◽  
Abdul Samad Mohammed ◽  
Umar Azam Muhammad

The effect of various operational factors, such as sliding speed, normal load and temperature on the tribological properties of Date palm fruit syrup (DPFS) as an environmentally friendly lubricant, is investigated. Ball-on-disc wear tests are conducted on mild steel samples in the presence of DPFS as a lubricant under different conditions and the coefficient of friction and wear rate are measured. Scanning electron microscopy, stylus profilometry, and Fourier transform infrared spectroscopy are used to evaluate the wear tracks to determine the underlying wear mechanisms. Results showed that DPFS has excellent tribological properties in terms of low friction and low wear rates making it a potential candidate to be used as a lubricant in tribological applications.


1986 ◽  
Vol 108 (1) ◽  
pp. 9-15 ◽  
Author(s):  
T. Hisakado

Assuming that harder asperities sliding on a flat surface were semicylindrical with the hemispherical ends, whose surface consisted of a series of spherical micro-asperities, effects of the number of contact points n, total area Sp of the cross-sections of grooves ploughed by harder asperities and depth of plastic zone on the coefficient of friction and wear for ceramics were theoretically analyzed. To verify theory, wear tests with various ceramic pins and a Si3N4 disk were carried out at a sliding speed of 1.63 m/s and under load of 0.98 N with no lubrication. The sizes of wear scratches on the worn surfaces were measured by means of a Talysurf and SEM photographs. The wear rates of the pins and Si3N4 disks increased with an increase in the mean cross-sectional area Sp/n of the scratches. This trend agreed with the theoretical results, which also showed that the Sp values were proportional to the wear rates. Theory also indicated the existence of a new criterion applicable to estimation of the wear rate.


Sign in / Sign up

Export Citation Format

Share Document