Tribological performance of industrial polyamide-imide and its composite under different cooling conditions

2012 ◽  
Vol 32 (3) ◽  
Author(s):  
Huseyin Unal ◽  
Mehmet Kurt ◽  
Abdullah Mimaroglu

Abstract Polyamide-imide (PAI) polymer is a high-temperature resistant polymer, which is used as contact breaker material because of its high electrical insulation property. The working conditions of contact breakers arise from the wear and friction problem conditions of these materials. Therefore, the tribological behavior of PAI polymer is important. In this study, the friction and wear performance of pure PAI polymer and PAI composite [PAI+12% graphite+3% polytetrafluoroethylene (PTFE)] were studied in two different cooling environmental conditions (with and without air cooling). Wear tests were carried out with the configuration of a polymer pin, on a rotating AISI 316 L stainless steel disc. Test conditions were atmospheric conditions, 50 N, 100 N, and 150 N loads and 0.5, 1.0, 2.0 and 3.0 m/s sliding speeds. For sliding without air cooling and sliding with air cooling, the results show that the coefficient of friction and wear rates for pure PAI and PAI+12% graphite+3% PTFE composite, slightly decrease and increase with the increase in applied load and sliding speed values, respectively. In addition, for the range of loads and sliding speeds of this study, low coefficients of friction and high specific wear rates are registered at sliding under air cooling conditions. Finally, the wear mechanism includes adhesive and abrasive processes.

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1336
Author(s):  
Jorge Caessa ◽  
Todor Vuchkov ◽  
Talha Bin Yaqub ◽  
Albano Cavaleiro

Friction and wear contribute to high energetic losses that reduce the efficiency of mechanical systems. However, carbon alloyed transition metal dichalcogenide (TMD-C) coatings possess low friction coefficients in diverse environments and can self-adapt to various sliding conditions. Hence, in this investigation, a semi-industrial magnetron sputtering device, operated in direct current mode (DC), is utilized to deposit several molybdenum-selenium-carbon (Mo-Se-C) coatings with a carbon content up to 60 atomic % (at. %). Then, the carbon content influence on the final properties of the films is analysed using several structural, mechanical and tribological characterization techniques. With an increasing carbon content in the Mo-Se-C films, lower Se/Mo ratio, porosity and roughness appeared, while the hardness and compactness increased. Pin-on-disk (POD) experiments performed in humid air disclosed that the Mo-Se-C vs. nitrile butadiene rubber (NBR) friction is higher than Mo-Se-C vs. steel friction, and the coefficient of friction (CoF) is higher at 25 °C than at 200 °C, for both steel and NBR countersurfaces. In terms of wear, the Mo-Se-C coatings with 51 at. % C showed the lowest specific wear rates of all carbon content films when sliding against steel. The study shows the potential of TMD-based coatings for friction and wear reduction sliding against rubber.


2017 ◽  
Vol 24 (4) ◽  
pp. 485-494 ◽  
Author(s):  
Iskender Ozsoy ◽  
Adullah Mimaroglu ◽  
Huseyin Unal

AbstractIn this study, the influence of micro- and nanofiller contents on the tribological performance of epoxy composites was studied. The fillers are micro-Al2O3, micro-TiO2, and micro-fly ash and nano-Al2O3, nano-TiO2, and nanoclay fillers. The microfillers were added to the epoxy by 10%, 20%, and 30% by weight. The nanofillers were added to the epoxy by 2.5%, 5%, and 10%. Friction and wear tests were conducted using the pin-on-disc arrangement. Tribo elements consisted of polymer pin and DIN 1.2344 steel counterface disc. A load value of 15 N, a sliding speed of 0.4 m/s, a sliding distance of 2000 m, and dry atmospheric conditions were applied to test conditions. The results show that the friction coefficients and the specific wear rates of the nanofilled composites increase as the filler content increases. For microfiller-filled epoxy composites, these values decrease as filler content increases. The tribological performance of epoxy composites is enhanced by the addition of microfillers, and the higher enhancement is reached with the addition of 30% fly ash filler. Finally, the pin and disc worn surface images show the presence of adhesive and some abrasive wear mechanisms.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1589 ◽  
Author(s):  
Mazin Tahir ◽  
Abdul Samad Mohammed ◽  
Umar Azam Muhammad

The effect of various operational factors, such as sliding speed, normal load and temperature on the tribological properties of Date palm fruit syrup (DPFS) as an environmentally friendly lubricant, is investigated. Ball-on-disc wear tests are conducted on mild steel samples in the presence of DPFS as a lubricant under different conditions and the coefficient of friction and wear rate are measured. Scanning electron microscopy, stylus profilometry, and Fourier transform infrared spectroscopy are used to evaluate the wear tracks to determine the underlying wear mechanisms. Results showed that DPFS has excellent tribological properties in terms of low friction and low wear rates making it a potential candidate to be used as a lubricant in tribological applications.


1986 ◽  
Vol 108 (1) ◽  
pp. 9-15 ◽  
Author(s):  
T. Hisakado

Assuming that harder asperities sliding on a flat surface were semicylindrical with the hemispherical ends, whose surface consisted of a series of spherical micro-asperities, effects of the number of contact points n, total area Sp of the cross-sections of grooves ploughed by harder asperities and depth of plastic zone on the coefficient of friction and wear for ceramics were theoretically analyzed. To verify theory, wear tests with various ceramic pins and a Si3N4 disk were carried out at a sliding speed of 1.63 m/s and under load of 0.98 N with no lubrication. The sizes of wear scratches on the worn surfaces were measured by means of a Talysurf and SEM photographs. The wear rates of the pins and Si3N4 disks increased with an increase in the mean cross-sectional area Sp/n of the scratches. This trend agreed with the theoretical results, which also showed that the Sp values were proportional to the wear rates. Theory also indicated the existence of a new criterion applicable to estimation of the wear rate.


1980 ◽  
Vol 102 (2) ◽  
pp. 236-245 ◽  
Author(s):  
J. K. Lancaster ◽  
D. Play ◽  
M. Godet ◽  
A. P. Verrall ◽  
R. Waghorne

Dry bearing tests have been made with a PTFE fibre/glass fibre/phenolic resin composite against stainless steel to examine the influence of time of sliding, counterface roughness and load. The worn surfaces were examined by optical and scanning electron microscopy, energy dispersive analysis of X-rays (EDAX) and X-ray photoelectron spectroscopy (ESCA). It is shown that the coefficient of friction and the rate of wear are strongly influenced by the formation of third bodies on both sliding surfaces. The structure and composition of these third bodies depend on the time of sliding and the load, but are independent of counterface roughness. Wear of the PTFE composite appears to occur on several scales, and considerable degradation of PTFE is evident within the third body (transfer film) on the counterface. The significance of these observations to the measured friction and wear rates is discussed.


2013 ◽  
Vol 21 (4) ◽  
pp. 41-50 ◽  
Author(s):  
Magdy Ali Abd El Aziz ◽  
Salh Abdelaleem ◽  
Mohamed Heikal

Abstract When a concrete structure is exposed to fire and cooling, some deterioration in its chemical resistivity and mechanical properties takes place. This deterioration can reach a level at which the structure may have to be thoroughly renovated or completely replaced. In this investigation, four types of cement mortars, ground clay bricks (GCB)/sand namely 0/3, 1/2, 2/1 and 3/0, were used. Three different cement contents were used: 350, 400 and 450 kg/m3. All the mortars were prepared and cured in tap water for 3 months and then kept in laboratory atmospheric conditions up to 6 months. The specimens were subjected to elevated temperatures up to 700°C for 3h and then cooled by three different conditions: water, furnace, and air cooling. The results show that all the mortars subjected to fire, irrespective of cooling mode, suffered a significant reduction in compressive strength. However, the mortars cooled in air exhibited a relativity higher reduction in compressive strength rather than those water or furnace cooled. The mortars containing GCB/sand (3/0) and GCB/sand (1/2) exhibited a relatively higher thermal stability than the others.


Author(s):  
M. J. Kadhim ◽  
S. W. E. Earles

Experiments are described in which stationary copper specimens are rubbed in a normal atmosphere against a rotating S62 steel disc under normal loads up to 4·5 lbf. The coefficient of friction is measured at sliding speeds of 93, 220, 328, and 490 ft/s using ⅛-in diameter specimens. Except at the lowest speed a gradual buildup of a continuous copper oxide layer on the disc track is observed with increasing normal load together with a corresponding decrease in the coefficient of friction. Having established an oxide layer on the track the coefficient of friction observed is low for all normal loads. The coefficient of friction is shown to decrease with normal load N and sliding speed U, to be a function of N1/2 U, and to depend on the state of the disc surface. Wear of -in diameter specimens is measured by weighing before and after a test. The wear rate is shown to decrease with sliding speed and increase with load, and for speeds of 220 and 328 ft/s to be a function of N/U. The wear rates measured at 93 ft/s are the same function of N/U for low values of N/U.


2007 ◽  
Vol 280-283 ◽  
pp. 1319-1322 ◽  
Author(s):  
X. Tian ◽  
Bin Lin ◽  
W.L. Zhang

The friction and wear of the silicon carbide (SiC) and hot pressed silicon nitride (Si3N4) against zirconia (Y–TZP) sliding under dry friction and room temperature conditions were investigated with pin-on-disk tribometer at sliding speed of 0.56 m·s-1 and normal load of 50 N, 80 N and 120 N, respectively. It was found that, the coefficient of friction and wear rate are dependent on the test duration as well as the normal load. Through analyzing and comparing, the wear rates of the two frictional couples both are in the 10-6 mm3 (N·m)-1. Based on the variety regulation of the wear maps, the wear mechanisms of the two couples were analyzed. Between the two couples, the friction and wear characteristics of the SiC/ZrO2 couple are better than the Si3N4/ZrO2 couple’s.


Author(s):  
M. A. Oomen ◽  
R. Bosman ◽  
P.M. Lugt

Reliable traction between wheel and rail is an important issue in the railway industry. To reduce variations in the coefficient of friction, so-called “friction modifiers” (carrier with particles) are used. Twin-disk tests were done with three commercial friction modifiers, based on different compositions of carrier and particles, to characterize their friction and wear behavior. It is shown experimentally that the influence of the carrier cannot be neglected just after application and very low (0.01-0.05) frictional values are observed in a fully flooded situation. However, starvation occurs quickly and friction values will become relatively stable at an intermediate level around μ=0.2 until the friction modifier is consumed and a new dose is required. After the carrier is pushed out of the running track the particles in the contact dominate the tribological performance. The level of friction is a function of total rolling distance, effective sliding length and sum velocity. The most dominant factor depends on the friction modifier and the working mechanism for friction stabilization. It is also shown that the wear rates during tests do not depend significantly on slip, which makes it possible to predict wear behavior. Wear rates are dependent on the type of friction modifier used.


2011 ◽  
Vol 148-149 ◽  
pp. 612-615 ◽  
Author(s):  
Zhi Yong Cai ◽  
Wen Xia Wang

The tribological performance of pure polyamide 66 (PA66) and Carbon fibre (CF) reinforced PA66 composite were studied at dry sliding and oil lubricated conditions. The results show that the coefficient of friction and specific wear rates for pure PA66 and CF/PA66 composite slightly in increase with the increase in applied pressure values. On the other hand the coefficient of friction is in decrease while the specific wear is in increase with the increase in sliding speed values.


Sign in / Sign up

Export Citation Format

Share Document