Application of an Internal Variable Constitutive Model to Predict Creep Response of an Aluminum Alloy Under Multiaxial Loading

1989 ◽  
Vol 56 (3) ◽  
pp. 514-518 ◽  
Author(s):  
I. U. Mahmood ◽  
M. O. Faruque ◽  
M. M. Zaman

This paper discusses the application of an internal variable, creep constitutive model, where the concept of piecewise linearity in the effective stress-creep strain rate relationship is utilized. Since the concept of piecewise linearity is assumed, an explicit functional form for creep strain rate at all levels of stress and temperature is not required. The aforementioned constitutive model is used to predict the creep response of an aluminum alloy (2618-T61) at 200°C and subjected to multiaxial loading. The results are compared with available experimental results. The model shows excellent agreement in the trend of creep response. The quantitative values also agree quite good with the experimental results.

Author(s):  
Ricardo Vega ◽  
Jaime A. Cano ◽  
Calvin M. Stewart

Abstract The objective of this study is to introduce a method for creating “material specific” creep continuum damage mechanics-based constitutive models. Herein, material specific is defined as a constitutive model based on the mechanism-informed minimum creep strain rate (MCSR) equations found in deformation mechanism maps and calibrated to available material data. The material specific models are created by finding the best MCSR model for a dataset. Once the best MCSR model is found, the Monkman Grant inverse relationship between the MCSR and rupture time is employed to derive a rupture equation. The equations are substituted into continuum damage mechanics-based creep strain rate and damage evolution equations to furnish predictions of creep deformation and damage. Material specific modeling allows for the derivation of creep constitutive models that can better the material behavior specific to the available data of a material. The material specific framework is also advantageous since it has a systematic framework that moves from finding the best MCSR model, to rupture time, to damage evolution and, creep strain rate. Data for Alloy P91 was evaluated and a material specific constitutive model derived. The material specific model was able to accurately predict the MCSR, creep deformation, damage, and rupture of alloy P91.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1038
Author(s):  
Xinxin Meng ◽  
Youxi Lin ◽  
Shaowei Mi

Because of the massive work and high cost of milling experiments, finite element analysis technology (FEA) was used to analyze the milling process of ADC12 aluminum alloy. An improved Johnson–Cook (J–C) constitutive equation was fitted by a series of dynamic impact tests in different strain rates and temperatures. It found that the flow stress gradually increases as the strain rate rises, but it decreases as the test temperature rises. Compared with the J–C constitutive model, the predicted flow stress by the improved J–C constitutive model was closer to the experimental results when the strain rate was larger than 8000 s−1 and the temperature was higher than 300 °C. A two-dimensional cycloidal cutting simulation model was constructed based on the two J–C constitutive equations which was validated by milling experiments at different cutting speeds. The simulation results based on the improved J–C constitutive equation were closer to the experimental results and showed the cutting force first increased and then decreased, with cutting speed increasing, reaching a maximum at 600 m/min.


Author(s):  
Jianchao Yu ◽  
Gang Wang ◽  
Jianwei Qin ◽  
Maobing Shuai ◽  
Yiming Rong

Dynamic deformation behaviors of aluminum alloy Al1060 (FCC metal) are studied by the uniaxial compression tests on the Split Hopkinson Pressure Bar over wide temperature and strain rate ranges. The experimental results show that the flow stress is both strain rate and temperature sensitivity. The flow stress decreases with increasing temperature when the strain rate keeps constant. When the temperature keeps constant, the flow stress increases with increasing strain rate. Considering the thermal activation of dislocation gliding in the dynamic deformation process, a physical-based constitutive model is developed based on the experimental results to predict the flows stress of Al1060 at a given strain rate and temperature. The material constants in the constitutive model are determined by the nonlinear genetic algorithm. The true stress-true strain curves predicted by the proposed constitutive models can give good correlations with the experimental results, which confirm that the proposed physical-based constitutive can accurately characterize the dynamic deformation behaviors of the studied aluminum alloy Al1060.


2000 ◽  
Vol 646 ◽  
Author(s):  
Haruyuki Inui ◽  
Koji Ishikawa ◽  
Masaharu Yamaguchi

ABSTRACTEffects of ternary additions on the deformation behavior of single crystals of MoSi2 with the hard [001] and soft [0 15 1] orientations have been investigated in compression and compression creep. The alloying elements studied include V, Cr, Nb and Al that form a C40 disilicide with Si and W and Re that form a C11b disilicide with Si. The addition of Al is found to decrease the yield strength of MoSi2 at all temperatures while the additions of V, Cr and Nb are found to decrease the yield strength at low temperatures and to increase the yield strength at high temperatures. In contrast, the additions of W and Re are found to increase the yield strength at all temperatures. The creep strain rate for the [001] orientation is significantly lower than that for the [0 15 1] orientation. The creep strain rate for both orientations is significantly improved by alloying with ternary elements such as Re and Nb.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Fan Zhang ◽  
Jianjian Zhao ◽  
Dawei Hu ◽  
Qian Sheng ◽  
Jianfu Shao

Fluid flow and fluid-rock interaction mainly take place in fracture network, consequently resulting in deformation and permeability variation of rock and deterioration of the wellbore performance. Mechanical-reactive flow coupling creep tests are performed on cracked granite under various confining pressures and acid and alkaline solution flows. The testing results show that the confining pressure and solution pH significantly influence the creep deformation, creep strain rate, and permeability. A primary creep stage and secondary creep stage are observed in all creep tests in this study; notably, the sample under a confining pressure of 10 MPa and acid solution injection undergoes creep failure for over 2700 hours. The acid solution has a more obvious influence on the creep behavior than that of the alkaline solution. With an increase in confining pressure, the total creep strain and creep strain rate in the samples gradually decrease during the injection of either solution. The permeability of the samples injected with either solution gradually deceases during the testing process, and this deceasing rate increases with the confining pressure. The scanning electron microscopy observations on the crack surfaces after the creep tests show that the surfaces of the fractures injected with the acid solution are smooth due to the dissolution of the matrix, while those injected with the alkaline solution include voids due to the dissolution of quartz. These experimental results could improve the understanding of the long-term transport and mechanical behaviors of wellbore.


Author(s):  
Takashi Ogata

Grade 91 is widely used for steam pipes and tubes in high temperature boilers of ultra-super critical power plants in Japan. It was reported that creep damage may initiate at the fine grain region within the heat affected zone (HAZ) in welded joints prior to the base metal, so called “Type IV” damage, which causes steam leakage in existing power plants. Therefore, development of creep damage assessment methods is not only an important but also an urgent subject to maintain operation reliability. In order to evaluate creep damage of welded joints based on finite element analyses, creep deformation properties of a base metal, a weld metal and a HAZ have to be obtained from creep tests. However, it is difficult to cut a standard size creep specimen from the HAZ region. Only a miniature size specimen is available from the narrow HAZ region. Therefore, development of creep testing and evaluation technique for miniature size specimens is highly expected. In this study, a miniature tensile type solid bar specimen with 1mm diameter was machined from a base metal, a weld metal and a HAZ of a new and a used Grade 91 welded joints, and creep tests of these miniature specimens were conducted by using a special developed creep testing machine. It was found that creep deformation property is almost identical between the base metal and weld metal, and creep strain rate of the HAZ is much faster than that of these metals in the new welded joint. Relationships between stress and creep strain rates of the base metal and the HAZ in the used welded joint are within scatter bands of those in the new material. On the other hand, creep strain rate of the weld metal in the used welded joint became much faster than that in the new one. Then both the standard size and the miniature size cross weld specimens were machined from the new and the used welded joints and were tested under the same temperature and stress conditions. Rupture time of the miniature cross weld specimen is much shorter than that of the standard size cross weld specimen. The finite element creep analysis of the specimens indicates that higher triaxiality stress yields within the HAZ of the standard size specimen than that of the miniature specimen causing faster creep strain rate in the HAZ of the miniature cross weld specimen.


2010 ◽  
Vol 24 (01n02) ◽  
pp. 267-275 ◽  
Author(s):  
Y. D. HAN ◽  
H. Y. JING ◽  
S. M. L. NAI ◽  
L. Y. XU ◽  
C. M. TAN ◽  
...  

In the present study, nanoindentation studies of the 95.8 Sn -3.5 Ag -0.7 Cu lead-free solder were conducted over a range of maximum loads from 20 mN to 100 mN, under a constant ramp rate of 0.05 s-1. The indentation scale dependence of creep behavior was investigated. The results revealed that the creep rate, creep strain rate and indentation stress are all dependent on the indentation depth. As the maximum load increased, an increasing trend in the creep rate was observed, while a decreasing trend in creep strain rate and indentation stress were observed. On the contrary, for the case of stress exponent value, no trend was observed and the values were found to range from 6.16 to 7.38. Furthermore, the experimental results also showed that the creep mechanism of the lead-free solder is dominated by dislocation climb.


2016 ◽  
Vol 35 (3) ◽  
pp. 243-252
Author(s):  
Balhassn S. M. Ali ◽  
Tom H. Hyde ◽  
Wei Sun

AbstractCommonly used small creep specimen types, such as ring and impression creep specimens, are capable of providing minimum creep strain rate data from small volumes of material. However, these test types are unable to provide the creep rupture data. In this paper the recently developed two-bar specimen type, which can be used to obtain minimum creep strain rate and creep rupture creep data from small volumes of material, is described. Conversion relationships are used to convert (i) the applied load to the equivalent uniaxial stress, and (ii) the load line deformation rate to the equivalent uniaxial creep strain rate. The effects of the specimen dimension ratios on the conversion factors are also discussed in this paper. This paper also shows comparisons between two-bar specimen creep test data and the corresponding uniaxial creep test data, for grade P91 steel at 650°C.


Sign in / Sign up

Export Citation Format

Share Document