Fillet Welds Under Bending and Shear

1986 ◽  
Vol 108 (4) ◽  
pp. 430-435
Author(s):  
H. Fessler ◽  
C. Pappalettere

A 12-mm-thick plate representing a vessel wall and two others representing attachments on the “inside” and “outside” (forming a symmetrical cross) are jointed by 12-mm, full penetration fillet welds. The attachment plates are in shear and bending; the vessel wall is in tension. Full-size, frozen-stress, photoelastic models of a real weld and four simplified shapes have been made, tested and analyzed to determine surface stresses and their directions in the attachment plate and in the fillet welds. Two-dimensional SCFs for the (horizontal) cross section in tension give safe overestimates of measured peak bending stresses. The directions of the fillet stresses are generally within 20 deg of expected values.

Author(s):  
B. D. Athey ◽  
A. L. Stout ◽  
M. F. Smith ◽  
J. P. Langmore

Although there is general agreement that Inactive chromosome fibers consist of helically packed nucleosomes, the pattern of packing is still undetermined. Only one of the proposed models, the crossed-linker model, predicts a variable diameter dependent on the length of DNA between nucleosomes. Measurements of the fiber diameter of negatively-stained and frozen- hydrated- chromatin from Thyone sperm (87bp linker) and Necturus erythrocytes (48bp linker) have been previously reported from this laboratory. We now introduce a more reliable method of measuring the diameters of electron images of fibrous objects. The procedure uses a modified version of the computer program TOTAL, which takes a two-dimensional projection of the fiber density (represented by the micrograph itself) and projects it down the fiber axis onto one dimension. We illustrate this method using high contrast, in-focus STEM images of TMV and chromatin from Thyone and Necturus. The measured diameters are in quantitative agreement with the expected values for the crossed-linker model for chromatin structure


1992 ◽  
Vol 23 (1) ◽  
pp. 1-12
Author(s):  
Ram Raj Vinda ◽  
Raja Ram Yadava ◽  
Naveen Kumar

Analytical solutions converging rapidly at large and small values of times have been obtained for two mathematical models which describe the concentration distribution of a non reactive pollutant from a point source against the flow in a horizontal cross-section of a finite saturated shallow aquifer possessing uniform horizontal groundwater flow. Zero concentration or the conditions in which the flux across the extreme boundaries are proportional to the respective flow components are applied. The effects of flow and dispersion on concentration distribution are also discussed.


1977 ◽  
Vol 12 (1) ◽  
pp. 233-255
Author(s):  
J.F. Sykes ◽  
A.J. Crutcher

Abstract A two-dimensional Galerkin finite element model for flow and contaminant transport in variably saturated porous media is used to analyze the transport of chlorides from a sanitary landfill located in Southern Ontario. A representative cross-section is selected for the analysis. Predicted chloride concentrations are presented for the cross section at various horizon years.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 327-330
Author(s):  
Li Yang ◽  
Bo Zhang ◽  
Jiří Jaromír Klemeš ◽  
Jie Liu ◽  
Meiyu Song ◽  
...  

Abstract Many researchers numerically investigated U-tube underground heat exchanger using a two-dimensional simplified pipe. However, a simplified model results in large errors compared to the data from construction sites. This research is carried out using a three-dimensional full-size model. A model validation is conducted by comparing with experimental data in summer. This article investigates the effects of fluid velocity and buried depth on the heat exchange rate in a vertical U-tube underground heat exchanger based on fluid–structure coupled simulations. Compared with the results at a flow rate of 0.4 m/s, the results of this research show that the heat transfer per buried depth at 1.0 m/s increases by 123.34%. With the increase of the buried depth from 80 to 140 m, the heat transfer per unit depth decreases by 9.72%.


2015 ◽  
Vol 15 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Matthias Ratajczak ◽  
Thomas Wondrak ◽  
Klaus Timmel ◽  
Frank Stefani ◽  
Sven Eckert

AbstractIn continuous casting DC magnetic fields perpendicular to the wide faces of the mold are used to control the flow in the mold. Especially in this case, even a rough knowledge of the flow structure in the mold would be highly desirable. The contactless inductive flow tomography (CIFT) allows to reconstruct the dominating two-dimensional flow structure in a slab casting mold by applying one external magnetic field and by measuring the flow-induced magnetic fields outside the mold. For a physical model of a mold with a cross section of 140 mm×35 mm we present preliminary measurements of the flow field in the mold in the presence of a magnetic brake. In addition, we show first reconstructions of the flow field in a mold with the cross section of 400 mm×100 mm demonstrating the upward scalability of CIFT.


1994 ◽  
Vol 361 ◽  
Author(s):  
V.A. Alyoshin ◽  
E.V. Sviridov ◽  
V.I.M. Hukhortov ◽  
I.H. Zakharchenko ◽  
V.P. Dudkevich

ABSTRACTSurface and cross-section relief evolution of ferroelectric epitaxial (Ba,Sr)TiO3 films rf-sputtered on (001) HgO crystal cle-avage surface versus the oxygen worKing gas pressure P and subst-rate temperature T were studied. Specific features of both three-dimensional and two-dimensional epitaxy mechanisms corresponding to various deposition conditions were revealed. Difference between low and high P-T-value 3D epitaxy was established. The deposition of films with mirror-smooth surfaces and perfect interfaces is shown to be possible.


1992 ◽  
Vol 241 ◽  
pp. 587-614 ◽  
Author(s):  
T. Dracos ◽  
M. Giger ◽  
G. H. Jirka

An experimental investigation of plane turbulent jets in bounded fluid layers is presented. The development of the jet is regular up to a distance from the orifice of approximately twice the depth of the fluid layer. From there on to a distance of about ten times the depth, the flow is dominated by secondary currents. The velocity distribution over a cross-section of the jet becomes three-dimensional and the jet undergoes a constriction in the midplane and a widening near the bounding surfaces. Beyond a distance of approximately ten times the depth of the bounded fluid layer the secondary currents disappear and the jet starts to meander around its centreplane. Large vortical structures develop with axes perpendicular to the bounding surfaces of the fluid layer. With increasing distance the size of these structures increases by pairing. These features of the jet are associated with the development of quasi two-dimensional turbulence. It is shown that the secondary currents and the meandering do not significantly affect the spreading of the jet. The quasi-two-dimensional turbulence, however, developing in the meandering jet, significantly influences the mixing of entrained fluid.


Sign in / Sign up

Export Citation Format

Share Document