Compression of Bonded Hollow Cylinders

1975 ◽  
Vol 42 (3) ◽  
pp. 730-731
Author(s):  
S. R. Moghe

It is shown, from the analysis of bonded hollow cylinders, that the measured elastic modulus for a hollow cylinder is equal to that of a solid cylinder if the ratio of loaded versus load free areas is the same. Theoretical results also agree well with the experimental data.

1972 ◽  
Vol 94 (1) ◽  
pp. 231-237 ◽  
Author(s):  
J. A. Bailey ◽  
S. L. Haas ◽  
K. C. Nawab

An analysis is presented which shows how the theory of anisotropy based on a von Mises criterion of yielding first proposed by Hill may be extended to the plastic torsional straining of a hollow cylinder. Expressions are given for the anisotropic parameters, and the yield stresses along the anisotropic axes in terms of certain quantities, namely; the change in axial and tangential strain with shear strain, the principal yield shear stress, and the through thickness yield stress of the hollow cylinder. Experimental measurement of these quantities is made for the plastic torsional straining of hollow cylinders of A1-1100. Experimental data are analyzed using the previously derived expressions, and the anisotropic parameters, and yield stresses along the anisotropic axes determined. Finally, the results of the investigation are discussed, and conclusions drawn.


The analysis of the previous results of the study on concrete stress-strain behavior at elevated temperatures has been carried out. Based on the analysis, the main reasons for strength retrogression and elastic modulus reduction of concrete have been identified. Despite a significant amount of research in this area, there is a large spread in experimental data received, both as a result of compression and tension. In addition, the deformation characteristics of concrete are insufficiently studied: the coefficient of transverse deformation, the limiting relative compression deformation corresponding to the peak load and the almost complete absence of studies of complete deformation diagrams at elevated temperatures. The two testing chambers provided creating the necessary temperature conditions for conducting studies under bending compression and tension have been developed. On the basis of the obtained experimental data of physical and mechanical characteristics of concrete at different temperatures under conditions of axial compression and tensile bending, conclusions about the nature of changes in strength and deformation characteristics have been drawn. Compression tests conducted following the method of concrete deformation complete curves provided obtaining diagrams not only at normal temperature, but also at elevated temperature. Based on the experimental results, dependences of changes in prism strength and elastic modulus as well as an equation for determining the relative deformation and stresses at elevated temperatures at all stages of concrete deterioration have been suggested.


1990 ◽  
Vol 112 (4) ◽  
pp. 590-595 ◽  
Author(s):  
J. H. Steward

In this paper, the requirements for an accurate 3D model of the tooth contact-line load distribution in real spur gears are summarized. The theoretical results (obtained by F.E.M.) for the point load compliance of wide-faced spur gear teeth are set out. These values compare well with experimental data obtained from tests on a large spur gear (18 mm module, 18 teeth).


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Eduard Amromin

According to several known experiments, an increase of the incoming flow air content can increase the hydrofoil lift coefficient. The presented theoretical study shows that such increase is associated with the decrease of the fluid density at the cavity surface. This decrease is caused by entrainment of air bubbles to the cavity from the surrounding flow. The theoretical results based on such explanation are in a good agreement with the earlier published experimental data for NACA0015.


2011 ◽  
Vol 368-373 ◽  
pp. 2483-2490
Author(s):  
Yao Ting Zhang ◽  
Yi Zheng ◽  
Hong Jian Li

A dynamic test of two unbonded fully prestressed concrete beams has been conducted. The results indicate that the natural frequency of beams increases with the prestress force, which is opposite to the analytical arguments for homogeneous and isotropic beams subject to axial force. This paper explains the change in frequencies by discussing the change in the elastic modulus. A modified formula is also proposed, and the experimental data agree well with the theoretical analysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
A. Gonzalez-Cisneros ◽  
F. L. Castillo-Alvarado ◽  
J. Ortiz-Lopez ◽  
G. Contreras-Puente

In CdS/CdTe solar cells, chemical interdiffusion at the interface gives rise to the formation of an interlayer of the ternary compoundCdSxCdTe1-x. In this work, we evaluate the effects of this interlayer in CdS/CdTe photovoltaic cells in order to improve theoretical results describing experimentalC-V(capacitance versus voltage) characteristics. We extended our previous theoretical methodology developed on the basis of three cardinal equations (Castillo-Alvarado et al., 2010). The present results provide a better fit to experimental data obtained from CdS/CdTe solar cells grown in our laboratory by the chemical bath deposition (for CdS film) and the close-spaced vapor transport (for CdTe film) techniques.


2014 ◽  
Vol 8 (1) ◽  
pp. 44-48
Author(s):  
Grzegorz Mieczkowski ◽  
Krzysztof Molski

Abstract The increasing application of composite materials in the construction of machines causes strong need for modelling and evaluating their strength. There are many well known hypotheses used for homogeneous materials subjected to monotone and cyclic loading conditions, which have been verified experimentally by various authors. These hypotheses should be verified also for composite materials. This paper provides experimental and theoretical results of such verifications for bimaterial structures with interfacial cracks. Three well known fracture hypotheses of: Griffith, McClintock and Novozhilov were chosen. The theoretical critical load values arising from each hypotheses were compared with the experimental data including uni and multi-axial loading conditions. All tests were carried out with using specially prepared specimens of steel and PMMA.


2018 ◽  
Vol 12 (2) ◽  
pp. 171
Author(s):  
Enobong E. Joshua ◽  
Cec Ekemini T. Akpan

This paper investigates the global asymptotic stability of a Delayed Extended Rosenzweig-MacArthur Model via Lyapunov-Krasovskii functionals. Frequency sweeping technique ensures stability switches as the delay parameter increases and passes the critical bifurcating threshold.The model exhibits a local Hopf-bifurcation from asymptotically stable oscillatory behaviors to unstable strange chaotic behaviors dependent of the delay parameter values.Hyper-chaotic fluctuations were observed for large delay values far away from the critical delay margin. Numerical simulations of experimental data obtained via non-dimensionalization have shown the applications of theoretical results in ecological population dynamics.


2011 ◽  
Vol 1 (32) ◽  
pp. 15
Author(s):  
Yang-Yih Chen ◽  
Meng-Syue Li ◽  
Hung-Chu Hsu ◽  
Ying-Pin Lin

In this paper, a new third-order Lagrangian asymptotic solution describing nonlinear water wave propagation on the surface of a uniform sloping bottom is presented. The model is formulated in the Lagrangian variables and we use a two-parameter perturbation method to develop a new mathematical derivation. The particle trajectories, wave pressure and Lagrangian velocity potential are obtained as a function of the nonlinear wave steepness  and the bottom slope  perturbed to third order. The analytical solution in Lagrangian form satisfies state of the normal pressure at the free surface. The condition of the conservation of mass flux is examined in detail for the first time. The two important properties in Lagrangian coordinates, Lagrangian wave frequency and Lagrangian mean level, are included in the third-order solution. The solution can also be used to estimate the mean return current for waves progressing over the sloping bottom. The Lagrangian solution untangle the description of the features of wave shoaling in the direction of wave propagation from deep to shallow water, as well as the process of successive deformation of a wave profile and water particle trajectories leading to wave breaking. The proposed model has proved to be capable of a better description of non-linear wave effects than the corresponding approximation of the same order derived by using the Eulerian description. The proposed solution has also been used to determine the wave shoaling process, and the comparisons between the experimental and theoretical results are presented in Fig.1a~1b. In addition, the basic wave-breaking criterion, namely the kinematical Stokes stability condition, has been investigated. The comparisons between the present theory, empirical formula of Goda (2004) and the experiments made by Iwagali et al.(1974), Deo et al.(2003) and Tsai et al.(2005) for the breaking index(Hb/L0) versus the relative water depth(d0/L0) under two different bottom slopes are depicted in Figs 2a~2b. It is found that the theoretical breaking index is well agreement with the experimental results for three bottom slopes. However,for steep slope of 1/3 shown in Fig 2b, the result of Goda‘s empirical formula gives a larger value in comparison with the experimental data and the present theory. Some of empirical formulas presented the breaking wave height in terms of deepwater wave condition, such as in Sunamura (1983) and in Rattanapitikon and Shibayama(2000). Base on the results depicted in Fig. 3a~3b, it showed that the theoretical results are in good agreement with the experimental data (Iwagali et al. 1974, Deo et al.2003 and Tsai et al. 2005) than the empirical formulas. The empirical formula of Sunamura (1983) always predicts an overestimation value.


1978 ◽  
Vol 31 (5) ◽  
pp. 451 ◽  
Author(s):  
DP Bhattacharyya

A study is made of the influence of long-term solar modulation on the low energy sea level muon spectrum near the geomagnetic equator. Recent experimental data are compared with theoretical results calculated from the phenomenological model of Allkofer and Dau. It is suggested that the observed enhancement in the muon intensity is mainly due to a shift in the solar potential.


Sign in / Sign up

Export Citation Format

Share Document