On the Behavior of Misaligned Journal Bearings Based on Mass-Conservative Thermohydrodynamic Analysis

2009 ◽  
Vol 132 (1) ◽  
Author(s):  
J. Y. Jang ◽  
M. M. Khonsari

Misalignment affects nearly all the bearing performance parameters including the cavitation, thermal field, leakage flow-rate, and moments. The present paper provides a comprehensive analysis of misaligned journal bearings based on a three-dimensional mass-conservative thermohydrodynamic model that appropriately takes into account the film rupture and reformation. An extensive set of numerical solutions are presented to closely examine the effects of misalignment in journal bearings.

2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Dengqian Ma ◽  
Yuanqiao Zhang ◽  
Zhigang Li ◽  
Jun Li ◽  
Xin Yan

Abstract To accurately predict the leakage flow and resistance characteristics of brush seals, the multiblock structured mesh and the mesh motion technique are applied to the three-dimensional (3D) staggered tube bundle model of brush seals. The multiblock structured mesh can easily add nodes and set boundary layers in the interbristle gap between adjacent bristles, which can ensure good mesh quality (orthogonal angle and expansion ratio). The mesh motion technique realizes the overall axial compactness of the bristle pack. The effects of pressure ratio Rp, sealing clearance c, and bristle pack compactness on the leakage flow and resistance characteristics are investigated. To analyze the aerodynamic resistance of the brush seals, Euler number (Eu) is applied in this study. The numerical results are in good agreement with the experimental data. Thus, the accuracy of the presented numerical method is validated. For the contacting brush seal, ΔSx, i has a significant effect on the leakage flow rate reduction. For the clearance brush seal, ΔSx, i has little effect on the leakage flow rate reduction. The leakage flow passing through the sealing clearance keeps almost constant. As for aerodynamic resistance, the presence of the sealing clearance can effectively convert the pressure energy of the leakage flow into the kinetic energy. As a result, the leakage flow velocity exiting the bristle pack of the clearance brush seal is 1.5 to 2.0 times larger than that of the contacting brush seal. Although the existence of the sealing clearance obviously increases the leakage flow rate, it effectively reduces the aerodynamic forces acting on the bristles. The developed numerical approach based on the three-dimensional staggered tube bundle model and multiblock structured mesh can serve as a technical method for analysis of the sealing mechanisms of brush seals.


Author(s):  
Jun Li ◽  
Shengru Kong ◽  
Xin Yan ◽  
Shinnosuke Obi ◽  
Zhengping Feng

Three-dimensional Reynolds-averaged Navier–Stokes (RANS) solutions from CFX were utilized to investigate the leakage flow characteristics in the labyrinth honeycomb seal of steam turbines. At first, the accuracy and reliability of the utilized RANS approach was demonstrated using the published experimental data of the honeycomb seal. It showed that the utilized numerical method has sufficient precision to predict the leakage performance in seals. Then a range of sealing clearances, cell diameters, cell depths, rotation speeds, and pressure ratios were investigated to determine how these factors affect the leakage flow rate of the labyrinth honeycomb seal. The computed leakage flow rate increased with increasing sealing clearance and pressure ratios. Furthermore, the results show that the studied labyrinth honeycomb seal has the optimum sealing performance in the case of honeycomb cell diameter equals labyrinth step width, and the ratio of the honeycomb cell depth to honeycomb cell diameter is 0.93 under the designed condition. The flow pattern of each case is also illustrated to describe the leakage flow characteristics in labyrinth honeycomb seals.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2189
Author(s):  
Tingchao Yu ◽  
Xiangqiu Zhang ◽  
Iran E. Lima Neto ◽  
Tuqiao Zhang ◽  
Yu Shao ◽  
...  

The traditional orifice discharge formula used to estimate the flow rate through a leak opening at a pipe wall often produces inaccurate results. This paper reports an original experimental study in which the influence of orifice-to-pipe diameter ratio on leakage flow rate was investigated for several internal/external flow conditions and orifice holes with different shapes. The results revealed that orifice-to-pipe diameter ratio (or pipe wall curvature) indeed influenced the leakage flow, with the discharge coefficient ( C d ) presenting a wide variation (0.60–0.85). As the orifice-to-pipe diameter ratio decreased, the values of C d systematically decreased from about 12% to 3%. Overall, the values of C d also decreased with β (ratio of pressure head differential at the orifice to wall thickness), as observed in previous studies. On the other hand, orifice shape, main pipe flow velocity, and external medium (water or air) all had a secondary effect on C d . The results obtained in the present study not only demonstrated that orifice-to-pipe diameter ratio affects the outflow, but also that real scale pipes may exhibit a relevant deviation of C d from the classical range (0.61–0.67) reported in the literature.


1986 ◽  
Vol 108 (4) ◽  
pp. 645-654 ◽  
Author(s):  
R. H. Buckholz ◽  
J. F. Lin

An analysis for hydrodynamic, non-Newtonian lubrication of misaligned journal bearings is given. The hydrodynamic load-carrying capacity for partial arc journal bearings lubricated by power-law, non-Newtonian fluids is calculated for small valves of the bearing aspect ratios. These results are compared with: numerical solutions to the non-Newtonian modified Reynolds equation, with Ocvirk’s experimental results for misaligned bearings, and with other numerical simulations. The cavitation (i.e., film rupture) boundary location is calculated using the Reynolds’ free-surface, boundary condition.


Author(s):  
Yang Chen ◽  
Jun Li ◽  
Chaoyang Tian ◽  
Gangyun Zhong ◽  
Xiaoping Fan ◽  
...  

The aerodynamic performance of three-stage turbine with different types of leakage flows was experimentally and numerically studied in this paper. The leakage flows of three-stage turbine included the shroud seal leakage flow between the rotor blade tip and case, the diaphragm seal leakage flow between the stator blade diaphragm and shaft, as well as the shaft packing leakage flow and the gap leakage flow between the rotor blade curved fir-tree root and wheel disk. The total aerodynamic performance of three-stage turbine including leakage flows was firstly experimentally measured. The detailed flow field and aerodynamic performance were also numerically investigated using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) and S-A turbulence model. The numerical mass flow rate and efficiency showed well agreement with experimental data. The effects of leakage flows between the fir-tree root and the wheel disk were studied. All leakage mass flow fractions, including the mass flow rate in each hole for all sets of root gaps were given for comparison. The effect of leakage flow on the aerodynamic performance of three-stage was illustrated and discussed.


RBRH ◽  
2021 ◽  
Vol 26 ◽  
Author(s):  
Mayara Francisca da Silva ◽  
Fábio Veríssimo Gonçalves ◽  
Johannes Gérson Janzen

ABSTRACT Computational Fluid Dynamics (CFD) simulations of a leakage in a pressurized pipe were undertaken to determine the empirical effects of hydraulic and geometric factors on the leakage flow rate. The results showed that pressure, leakage area and leakage form, influenced the leakage flow rate significantly, while pipe thickness and mean velocity did not influence the leakage flow rate. With relation to the interactions, the effect of pressure upon leakage flow rate depends on leakage area, being stronger for great leakage areas; the effects of leakage area and pressure on leakage flow rate is more pronounced for longitudinal leakages than for circular leakages. Finally, our results suggest that the equations that predict leakage flow rate in pressurized pipes may need a revision.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Lingzi Wang ◽  
Jianmei Feng ◽  
Mingfeng Wang ◽  
Zenghui Ma ◽  
Xueyuan Peng

In the reciprocating labyrinth piston compressor, the characteristic of the internal leakage is crucial for the leakage management and performance improvement of the compressor. However, most of the published studies investigated the rotor-stator system, and those who study the reciprocating piston-cylinder system basically focus on the effects of the geometrical parameters. These conclusions could not directly be applied to predict the real-time leakage flow rate through the labyrinth seal because of the fast reciprocating motion of the piston, which will cause continually pressure change in two compression chambers, and then the pressure fluctuation will affect the flow through the labyrinth seal. A transient simulation model employing the multiscale dynamic mesh, which considers the effect of the reciprocating motion of the piston in the cylinder, is established to identify the characteristics of the internal leakage. This model was verified by a specially designed compressor, and the influence of various parameters was analyzed in detail. The sealing performance decreased linearly with the increase in the pressure ratio, and higher pressure inlet leads to higher leakage flow under the same pressure ratio. The labyrinth seal performance positively correlated to the increase of the rotational speed. Leakage characteristics of five working mediums were carried out, and the results indicated that the relative leakage decreased with an increase in the relative molecular mass. From this study, the realistic internal leakage flow rate under different operating parameters in the reciprocating labyrinth piston compressor could be predicated.


2014 ◽  
Vol 635-637 ◽  
pp. 341-345 ◽  
Author(s):  
Wei Wang

The spherical distribution pairs of the plunger and the cylinder friction, has an important influence on the performance of spherical port plate axial piston pump. Based on the analysis of fluid viscosity change with pressure and temperature, considering friction differential pressure flow and shear flow, establishes the mathematics model of the friction pair of leakage. The simulation analysis using MATLAB software, the leakage flow rate is not proportional to pressure, but with the increase of pressure leakage flow was increased, and with the increase of pressure viscosity coefficient and temperature coefficient of viscosity, the leakage flow rate correction coefficient increases obviously, so in the choice of the hydraulic oil cylinder hole, should choose a relatively moving average leakage rate had no effect the piston ring slot.


Sign in / Sign up

Export Citation Format

Share Document