Optimum Design of Straight-Walled Diffusers

1959 ◽  
Vol 81 (3) ◽  
pp. 321-329 ◽  
Author(s):  
S. J. Kline ◽  
D. E. Abbott ◽  
R. W. Fox

The four common optimum problems in diffuser design are defined. These optima are located in relation to the over-all flow regimes in terms of geometrical parameters for straight-walled units. Using an empirically derived transformation of variables between the conical and two-dimensional geometries, all available data for optimum recovery at constant ratio of wall length to throat width are correlated by a single straight line. This line lies slightly above and parallel to the line of onset of large transitory stall on the chart of over-all flow regimes. The correlated results are based on a literature survey. The range of conditions for each investigation is tabulated for convenient future reference.

Author(s):  
Fumiya Akasaka ◽  
Kazuki Fujita ◽  
Yoshiki Shimomura

This paper proposes the PSS Business Case Map as a tool to support designers’ idea generation in PSS design. The map visualizes the similarities among PSS business cases in a two-dimensional diagram. To make the map, PSS business cases are first collected by conducting, for example, a literature survey. The collected business cases are then classified from multiple aspects that characterize each case such as its product type, service type, target customer, and so on. Based on the results of this classification, the similarities among the cases are calculated and visualized by using the Self-Organizing Map (SOM) technique. A SOM is a type of artificial neural network that is trained using unsupervised learning to produce a low-dimensional (typically two-dimensional) view from high-dimensional data. The visualization result is offered to designers in a form of a two-dimensional map, which is called the PSS Business Case Map. By using the map, designers can figure out the position of their current business and can acquire ideas for the servitization of their business.


1958 ◽  
Vol 4 (6) ◽  
pp. 600-606 ◽  
Author(s):  
G. Power ◽  
P. Smith

A set of two-dimensional subsonic flows past certain cylinders is obtained using hodograph methods, in which the true pressure-volume relationship is replaced by various straight-line approximations. It is found that the approximation obtained by a least-squares method possibly gives best results. Comparison is made with values obtained by using the von Kármán-Tsien approximation and also with results obtained by the variational approach of Lush & Cherry (1956).


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Fabio Nardecchia ◽  
Annalisa Di Bernardino ◽  
Francesca Pagliaro ◽  
Paolo Monti ◽  
Giovanni Leuzzi ◽  
...  

Computational fluid dynamics (CFD) is currently used in the environmental field to simulate flow and dispersion of pollutants around buildings. However, the closure assumptions of the turbulence usually employed in CFD codes are not always physically based and adequate for all the flow regimes relating to practical applications. The starting point of this work is the performance assessment of the V2F (i.e., v2¯ − f) model implemented in Ansys Fluent for simulating the flow field in an idealized array of two-dimensional canyons. The V2F model has been used in the past to predict low-speed and wall-bounded flows, but it has never been used to simulate airflows in urban street canyons. The numerical results are validated against experimental data collected in the water channel and compared with other turbulence models incorporated in Ansys Fluent (i.e., variations of both k-ε and k-ω models and the Reynolds stress model). The results show that the V2F model provides the best prediction of the flow field for two flow regimes commonly found in urban canopies. The V2F model is also employed to quantify the air-exchange rate (ACH) for a series of two-dimensional building arrangements, such as step-up and step-down configurations, having different aspect ratios and relative heights of the buildings. The results show a clear dependence of the ACH on the latter two parameters and highlight the role played by the turbulence in the exchange of air mass, particularly important for the step-down configurations, when the ventilation associated with the mean flow is generally poor.


2009 ◽  
Vol 19 (02) ◽  
pp. 545-555 ◽  
Author(s):  
F. TRAMONTANA ◽  
L. GARDINI ◽  
D. FOURNIER-PRUNARET ◽  
P. CHARGE

We consider the class of two-dimensional maps of the plane for which there exists a whole one-dimensional singular set (for example, a straight line) that is mapped into one point, called a "knot point" of the map. The special character of this kind of point has been already observed in maps of this class with at least one of the inverses having a vanishing denominator. In that framework, a knot is the so-called focal point of the inverse map (it is the same point). In this paper, we show that knots may also exist in other families of maps, not related to an inverse having values going to infinity. Some particular properties related to focal points persist, such as the existence of a "point to slope" correspondence between the points of the singular line and the slopes in the knot, lobes issuing from the knot point and loops in infinitely many points of an attracting set or in invariant stable and unstable sets.


Author(s):  
V.V. Chapursky ◽  
A.A. Filatov ◽  
D.E. Koroteev

The methods of measuring the three coordinates of an aircraft in the takeoff and landing mode on the runway of airfields based on the use of non - cooperative two-and three-position systems of radars with phased array antennas are considered. For these variants, general analytical expressions are obtained for the complex generalized correlation integral of space – time processing in the function of spatial coordinates, taking into account the individual directional pattern of phased array antennas. On the basis of two – dimensional profiles of the correlation integral modules «range – elevation» and «azimuth – elevation», examples of comparing particular variants of two-position and three-position systems of radars with their location on one straight line parallel runway are given. In conditions of large signal-to-noise ratios, power-law nonlinear transformations of the correlation integral correlation integral module are applied to reduce the level of side lobes in the two – dimensional sections «range – elevation» and «azimuth – elevation». The following results are obtained using examples. Two-dimensional diagrams of the correlation integral module «range – elevation» do not depend on the azimuth of the aircraft in the range of azimuth values β=0…10 ̊ and correctly display the angle of elevation and the range of the aircraft when 2…3 radars of a non-cooperative system are located on the straight line parallel runway. The two-dimensional diagrams of the correlation integral module «azimuth – elevation angle» have an interference structure, and the number and level of their side lobes increase with increasing azimuth of the aircraft. With azimuth β≥10 ̊, this can lead to ambiguity in the measurement of the azimuth and uncertainty in the elevation angle . One of the measures to reduce the side level of the diagrams of the correlation integral module can be the use of a power-law transformation of normalized diagrams exponentiation of degree 3...4. An increase in the number of radars from two to three when they are located on one straight line parallel to the runway led to a decrease in the side lobes level of the «range – elevation angle» and «azimuth – elevation angle» diagrams. In this case, it may be advisable to solve the problem of optimal choice of the position of the intermediate radar on the same straight line. Calculations were also carried out for an additional example of the location of the intermediate radar of a 3-position system with its removal from the base line. At the same time, there was an increase of the side lobes level in the «azimuth – elevation angle» sections, which in the future may require additional research in terms of optimizing the placement of the radars in horizontal plane for such a radar systems.


2019 ◽  
Vol 874 ◽  
pp. 1057-1095 ◽  
Author(s):  
Artem N. Nuriev ◽  
Airat M. Kamalutdinov ◽  
Andrey G. Egorov

The paper is devoted to the problem of harmonic oscillations of thin plates in a viscous incompressible fluid. The two-dimensional flows caused by the plate oscillations and their hydrodynamic influence on the plates are studied. The fluid motion is described by the non-stationary Navier–Stokes equations, which are solved numerically on the basis of the finite volume method. The simulation is carried out for plates with different thicknesses and shapes of edges in a wide range of control parameters of the oscillatory process: dimensionless frequency and amplitude of oscillations. For the first time in the framework of one model all two-dimensional flow regimes, which were found earlier in experimental studies, are described. Two new flow regimes emerging along the stability boundaries of symmetric flow regimes are localized. The map of flow regimes in the frequency–amplitude plane is constructed. The analysis of the hydrodynamic influence of flows on the plates allow us to establish new effects associated with the influence of the shape of the plates on the drag and inertia forces. Due to these effects, the values of hydrodynamic forces can differ by 90 % at the same parameters of the oscillation. The lower and upper estimates of hydrodynamic forces obtained in the work have a good agreement with the experimental data presented in the literature.


2014 ◽  
Vol 609-610 ◽  
pp. 1094-1099
Author(s):  
Yuan Yuan Shan ◽  
Ming Qin ◽  
Sheng Qi Chen

A two-dimensional position sensitive detecting sensor (PSD) based on avalanche breakdown is introduced in this paper. The structure of the sensor is designed under the assumption that the breakdown of the PN junction in the sensor occurs at the bottom of the PN junction. The breakdown structure and characteristics of the sensor are simulated by Medici software and the doping structure and process conditions are calculated by Tsuprem4 software. By using COMSOL Multiphysics, we obtained current allocation of the straight and right angle type electrodes, which is corresponding to the optimal structure. In simulation, the root mean square error of the rectangular-shaped electrode and the straight line-shaped electrode are 0.198, 0.145 respectively. Experiment results show that in the 50% photosensitive area with the center as the origin, the rectangular-shaped electrode error is much smaller than a straight line-shaped electrode and fits in to linear relationship better. But the error of the angle the boundary of the electrode is significantly worse than the line-shaped electrode.


2014 ◽  
Vol 24 (01) ◽  
pp. 61-86 ◽  
Author(s):  
STEFAN HUBER ◽  
MARTIN HELD ◽  
PETER MEERWALD ◽  
ROLAND KWITT

Watermarking techniques for vector graphics dislocate vertices in order to embed imperceptible, yet detectable, statistical features into the input data. The embedding process may result in a change of the topology of the input data, e.g., by introducing self-intersections, which is undesirable or even disastrous for many applications. In this paper we present a watermarking framework for two-dimensional vector graphics that employs conventional watermarking techniques but still provides the guarantee that the topology of the input data is preserved. The geometric part of this framework computes so-called maximum perturbation regions (MPR) of vertices. We propose two efficient algorithms to compute MPRs based on Voronoi diagrams and constrained triangulations. Furthermore, we present two algorithms to conditionally correct the watermarked data in order to increase the watermark embedding capacity and still guarantee topological correctness. While we focus on the watermarking of input formed by straight-line segments, one of our approaches can also be extended to circular arcs. We conclude the paper by demonstrating and analyzing the applicability of our framework in conjunction with two well-known watermarking techniques.


2016 ◽  
Vol 18 (1) ◽  
pp. 344-350 ◽  
Author(s):  
Fatemeh Dolati ◽  
Sayyed Faramarz Tayyari ◽  
Mohammad Vakili ◽  
Yan Alexander Wang

A two-dimensional potential energy function has been applied to study the bent intramolecular H-bonds within acetylacetone and its α-halo derivatives. The theoretically predicted proton transfer barrier heights correlate very well with geometrical parameters and electronic properties related to the H-bond strength.


2014 ◽  
Vol 751 ◽  
pp. 1-37 ◽  
Author(s):  
Ming Zhao ◽  
Liang Cheng

AbstractOscillatory flow past two circular cylinders in side-by-side and tandem arrangements at low Reynolds numbers is simulated numerically by solving the two-dimensional Navier–Stokes (NS) equations using a finite-element method (FEM). The aim of this study is to identify the flow regimes of the two-cylinder system at different gap arrangements and Keulegan–Carpenter numbers (KC). Simulations are conducted at seven gap ratios $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}G$ ($G=L/D$ where $L$ is the cylinder-to-cylinder gap and $D$ the diameter of a cylinder) of 0.5, 1, 1.5, 2, 3, 4 and 5 and KC ranging from 1 to 12 with an interval of 0.25. The flow regimes that have been identified for oscillatory flow around a single cylinder are also observed in the two-cylinder system but with different flow patterns due to the interactions between the two cylinders. In the side-by-side arrangement, the vortex shedding from the gap between the two cylinders dominates when the gap ratio is small, resulting in the gap vortex shedding (GVS) regime, which is different from any of the flow regimes identified for a single cylinder. For intermediate gap ratios of 1.5 and 2 in the side-by-side arrangement, the vortex shedding mode from one side of each cylinder is not necessarily the same as that from the other side, forming a so-called combined flow regime. When the gap ratio between the two cylinders is sufficiently large, the vortex shedding from each cylinder is similar to that of a single cylinder. In the tandem arrangement, when the gap between the two cylinders is very small, the flow regimes are similar to that of a single cylinder. For large gap ratios in the tandem arrangement, the vortex shedding flows from the gap side of the two cylinders interact and those from the outer sides of the cylinders are less affected by the existence of the other cylinder and similar to that of a single cylinder. Strong interaction between the vortex shedding flows from the two cylinders makes the flow very irregular at large KC values for both side-by-side and tandem arrangements.


Sign in / Sign up

Export Citation Format

Share Document