Residual Winding Stresses Due to Spatial Web Thickness Variation

2016 ◽  
Vol 139 (3) ◽  
Author(s):  
J. K. Good ◽  
C. Mollamahmutoglu ◽  
R. Markum ◽  
J. W. Gale

At the end of roll-to-roll (R2R) manufacturing process machines, the web substrate must be wound into rolls. Winding is the only means known to store and protect vast lengths of very thin webs for subsequent processing. Web thickness variation in wound rolls is a root cause of large manufacturing loss due to residual stress-related defects. Minute thickness variations down the length and across the web width can induce large residual stress variations and defects within the roll. Winding models allow the exploration of winding residual stresses whose variation has been affected by web thickness or coating imperfections. Knowledge of these stresses is used to mitigate manufacturing defects. Spot web thickness sensors are employed in R2R process lines that scan over the web width while the web is moving downstream through the process machine. Spatially, this provides a measure of web thickness in a zig-zag pattern. During manufacturing, the thickness variation is used as a control feedback parameter to manipulate a forming or coating die lip to reduce the web or coated web thickness variation. The thickness variation acceptable in process may be very different than that which is acceptable based on the residual stresses in the wound roll. It will be determined whether the thickness test data captured spatially for process feedback are sufficient to characterize the residual stresses in the wound roll. A winding model will be developed and verified that is used to characterize these residual stresses.

Author(s):  
Y. Ding ◽  
M. Yetisir ◽  
S. Khajehpour

Cold bending, warm bending (bending with local heating) and induction bending are three manufacturing processes widely used to produce pipe bends. The cold and warm bending processes have been used for the fabrication of carbon steel feeder bends for CANDU® reactors, and the induction bending process was considered for the fabrication of stainless steel feeder pipes for an advanced CANDU reactor. Bending processes result in plastic deformation, and inevitably, introduce residual stresses in the deformed pipes. Residual stresses in feeder bends are believed to be a very important contributing factor in feeder cracking. Different bending processes result in widely different residual stress patterns and magnitudes in pipe bends. Hence, it is important to understand the effect of bending processes and the process parameters used on the residual stress distribution in the bent pipes. Numerical models have been successfully developed to predict the residual stresses and the deformed shapes induced by cold, warm and induction bending processes. This paper provides a comprehensive review of the predicted residual stress distributions, ovality and wall-thickness variations of the cold, warm and induction bends. The predicted results were compared to earlier measurements of spare CANDU feeder bends and test bends. Advantages and disadvantages of the three bending processes are summarized. Numerical approaches for the modeling of residual stresses could be of benefit to engineering estimates of residual stresses in feeder pipes for safety evaluation of nuclear reactors.


2011 ◽  
Vol 291-294 ◽  
pp. 934-940 ◽  
Author(s):  
Shao Hua Yan ◽  
Hui Chen ◽  
Guo Qing Gou ◽  
Da Li ◽  
Yan Liu ◽  
...  

The residual stress,which is unavoidable in the process of flash-butt-weld rails,plays important roles in the service life of the railway rails.However,knowledge of magnitude,direction,and sign of the residual stress is useful for maintenance and failure prevention.In this paper,we measured the residual stresses in the flash-butt weld of the U71Mn railway rail,using X-ray diffraction method.Besides,we investigated the influence of grinding on residual surface stress.This investigation showed that residual stress generated by grinding could be removed by electro-polishing,we also found that there was longitudinal compressive stress in the foot and head region,while the web region presented tensile stress,and in the transverse position,all of the three regions existed both compressive and tensile stress.


1994 ◽  
Vol 116 (4) ◽  
pp. 561-566 ◽  
Author(s):  
Dario Vangi

The semidestructive incremental hole-drilling method commonly used to evaluate residual stresses is exceedingly sensitive to experimental errors, with sensitivity increasing as hole depth increases. To determine stress variations through the engine thickness, it is necessary to use accurate drilling methods, as well as suitable mathematical models and procedures to minimize the errors associated with residual stress measurement. This work examines the effects of measurement errors on the evaluation of residual stresses with the integral method. An enhanced procedure for managing the experimental data is proposed that allows evaluation of the residual stresses with thickness variations.


2010 ◽  
Vol 24-25 ◽  
pp. 305-310
Author(s):  
M. Jezzini-Aouad ◽  
Patrick Flahaut ◽  
Saïd Hariri ◽  
D. Zakrzewski ◽  
L. Winiar

Rail transport development offers economic and ecological interests. Nevertheless, it requires heavy investments in rolling material and infrastructure. To be competitive, this transportation means must rely on safe and reliable infrastructure, which requires optimization of all implemented techniques and structure. Rail thermite (or alumino-thermic) welding is widely used within the railway industry for in-track welding during re-rail and defect replacement. The process provides numerous advantages against other welding technology commonly used. Obviously, future demands on train traffic are heavier axle loads, higher train speeds and increased traffic density. Thus, a new enhanced weld should be developed to prevent accidents due to fracture of welds and to lower maintenance costs. In order to improve such assembly process, a detailed metallurgical study coupled to a thermomechanical modeling of the phenomena involved in the rail thermite welding process is carried out. Obtained data enables us to develop a new improved alumino-thermic weld (type A). This joint is made by modifying the routinely specified procedure (type B) used in a railway rail by a standard gap alumino-thermic weld. Joints of type A and B are tested and compared. Based on experimental temperature measurements, a finite element analysis is used to calculate the thermal residual stresses induced. Besides, experimental investigation was carried out in order to validate the numerical model. Hence, X-Ray diffraction has been used to map the residual stress field that is generated in welded rail of types A and B. In the vicinity of the weld, the residual stress patterns depend on the thermal conditions during welding. Their effect on fatigue crack growth in rail welds is studied. In the web region, both longitudinal and vertical components of residual stresses are tensile, which increases the susceptibility of that region to crack initiation and propagation from internal material defects. Indeed, weld fracture in track initiates at the web fillet. Thus, to be closer to real issue, fatigue tests specimens has been defined within the split-web area. Fatigue tests was performed on the defined specimens, welded by conventional and improved processes and obtained results adjudicates on the new advances.


Author(s):  
Ying Hong ◽  
Xuesheng Wang ◽  
Yan Wang ◽  
Zhao Zhang ◽  
Yong Han

Stainless steel 304 L tubes are commonly used in the fabrication of heat exchangers for nuclear power stations. The stress corrosion cracking (SCC) of 304 L tubes in hydraulically expanded tube-to-tubesheet joints is the main reason for the failure of heat exchangers. In this study, 304 L hydraulically expanded joint specimens were prepared and the residual stresses of a tube were evaluated with both an experimental method and the finite element method (FEM). The residual stresses in the outer and inner surfaces of the tube were measured by strain gauges. The expanding and unloading processes of the tube-to-tubesheet joints were simulated by the FEM. Furthermore, an SCC test was carried out to verify the results of the experimental measurement and the FEM. There was good agreement between the FEM and the experimental results. The distribution of the residual stress of the tube in the expanded joint was revealed by the FEM. The effects of the expansion pressure, initial tube-to-hole clearance, and yield strength of the tube on the residual stress in the transition zone that lay between the expanded and unexpanded region of the tube were investigated. The results showed that the residual stress of the expanded joint reached the maximum value when the initial clearance was eliminated. The residual stress level decreased with the decrease of the initial tube-to-hole clearance and yield strength. Finally, an effective method that would reduce the residual stress without losing tightness was proposed.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 479
Author(s):  
Yang Zhao ◽  
Fan Sun ◽  
Peng Jiang ◽  
Yongle Sun

The effects of surface roughness on the stresses in an alumina scale formed on a Fecralloy substrate are investigated. Spherical indenters were used to create indents with different radii and depths to represent surface roughness and then the roughness effect was studied comprehensively. It was found that the residual stresses in the alumina scale formed around the rough surface are almost constant and they are dominated by the curvature rather than the depth of the roughness. Oxidation changes the surface roughness. The edge of the indent was sharpened after oxidation and the residual stress there was released presumably due to cracking. The residual stresses in the alumina scale decrease with increase in oxidation time, while the substrate thickness has little effect, given that the substrate is thicker than the alumina scale. Furthermore, the effect of roughness on the oxide growth stress is analysed. This work indicates that the surface roughness should be considered for evaluation of stresses in coatings.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1123
Author(s):  
Mehdi Safari ◽  
Ricardo J. Alves de Sousa ◽  
Jalal Joudaki

The laser tube bending process (LTBP) process is a thermal non-contact process for bending tubes with less springback and less thinning of the tube. In this paper, the laser tube bending process will be studied experimentally. The length of irradiation and irradiation scheme are two main affecting process parameters in the LTBP process. For this purpose, different samples according to two main irradiation schemes (Circular irradiating scheme (CIS) and axial irradiating scheme (AIS)) and different lengths of laser beam irradiation (from 4.7 to 28.2 mm) are fabricated. The main bending angle of laser-bent tube, lateral bending angle, ovality, and thickness variations is measured experimentally, and the effects of the irradiating scheme and the length of irradiation are investigated. An 18 mm diameter, 1 mm thick mild steel tube was bent with 1100 Watts laser beam. The results show that for both irradiating schemes, by increasing the irradiating length of the main and lateral bending angle, the ovality and thickness variation ratio of the bent tube are increased. In addition, for a similar irradiating length, the main bending angle with AIS is considerably higher than CIS. The lateral bending angle by AIS is much less than the lateral bending angle with CIS. The results demonstrate that the ovality percentage and the thickness variation ratio for the laser-bent tube obtained by CIS are much more than the values associated with by AIS laser-bent tube.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 182
Author(s):  
Suvi Santa-aho ◽  
Mika Kiviluoma ◽  
Tuomas Jokiaho ◽  
Tejas Gundgire ◽  
Mari Honkanen ◽  
...  

Additive manufacturing (AM) is a relatively new manufacturing method that can produce complex geometries and optimized shapes with less process steps. In addition to distinct microstructural features, residual stresses and their formation are also inherent to AM components. AM components require several post-processing steps before they are ready for use. To change the traditional manufacturing method to AM, comprehensive characterization is needed to verify the suitability of AM components. On very demanding corrosion atmospheres, the question is does AM lower or eliminate the risk of stress corrosion cracking (SCC) compared to welded 316L components? This work concentrates on post-processing and its influence on the microstructure and surface and subsurface residual stresses. The shot peening (SP) post-processing levelled out the residual stress differences, producing compressive residual stresses of more than −400 MPa in the AM samples and the effect exceeded an over 100 µm layer below the surface. Post-processing caused grain refinement and low-angle boundary formation on the sample surface layer and silicon carbide (SiC) residue adhesion, which should be taken into account when using the components. Immersion tests with four-point-bending in the heated 80 °C magnesium chloride solution for SCC showed no difference between AM and reference samples even after a 674 h immersion.


2016 ◽  
Vol 879 ◽  
pp. 1800-1806 ◽  
Author(s):  
M. Smith ◽  
L. Bichler ◽  
D. Sediako

Measurement of residual strains by neutron diffraction of linear friction welded Inconel® 718 (IN 718) superalloy acquired from a mid-service aero-engine disk was undertaken in this study. Residual strain and stress throughout the various weld regions including the heat affected zone (HAZ), thermomechanical affected zone (TMAZ) and dynamically recrystallized zone (DRX) were characterized. The residual stresses were observed to increase from the base material to the weld interface, with a peak stress at the weld interface in all orthogonal directions. The trends for residual stress across the weld are in agreement with other work published in literature for solid state welding of aerospace alloys, where high residual stresses were commonly reported at the weld interface.


2020 ◽  
Vol 64 (7) ◽  
pp. 1195-1212
Author(s):  
B. Lennart Josefson ◽  
R. Bisschop ◽  
M. Messaadi ◽  
J. Hantusch

Abstract The aluminothermic welding (ATW) process is the most commonly used welding process for welding rails (track) in the field. The large amount of weld metal added in the ATW process may result in a wide uneven surface zone on the rail head, which may, in rare cases, lead to irregularities in wear and plastic deformation due to high dynamic wheel-rail forces as wheels pass. The present paper studies the introduction of additional forging to the ATW process, intended to reduce the width of the zone affected by the heat input, while not creating a more detrimental residual stress field. Simulations using a novel thermo-mechanical FE model of the ATW process show that addition of a forging pressure leads to a somewhat smaller width of the zone affected by heat. This is also found in a metallurgical examination, showing that this zone (weld metal and heat-affected zone) is fully pearlitic. Only marginal differences are found in the residual stress field when additional forging is applied. In both cases, large tensile residual stresses are found in the rail web at the weld. Additional forging may increase the risk of hot cracking due to an increase in plastic strains within the welded area.


Sign in / Sign up

Export Citation Format

Share Document