The Tribological Characteristics of Cu-Based Friction Pairs in a Wet Multidisk Clutch Under Nonuniform Contact

2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Er-hui Zhao ◽  
Biao Ma ◽  
He-yan Li

This work is devoted to investigate the effects of thermal buckling on the tribological characteristics of a Cu-based wet clutch by artificially modifying friction pairs into different contact ratios. A thermal lubrication model is provided, and corresponding experiments are conducted on the wet clutch comprehensive test bench. The friction results from measurements and simulations for such modified friction pairs are analyzed. The results show that, as the contact ratio reduces, surface temperature rises obviously, and friction coefficient increases dramatically, so that local friction torque and total output torque grow significantly. In addition, the vibration of the output torque becomes more severe as the contact ratio reduces. Therefore, the nonuniform contact after thermal buckling exacerbates the friction characteristics of friction pairs severely and accelerates the failure of wet clutches.

2020 ◽  
Vol 86 (8) ◽  
pp. 66-71
Author(s):  
V. E. Red’kin ◽  
Yu. S. Tkachenko ◽  
P. O. Sukhodaev ◽  
A. I. Lyamkin

A compact and simple in design device (friction machine) for testing materials for friction and wear is developed. The device is intended for determination of the wear resistance and friction coefficient of structural, frictional and antifriction materials, as well as the tribological characteristics of lubricants. The measurement system of the device includes spring helical and flat spiral elastic elements, combined in one node and designed to measure the normal force and friction torque, respectively. Metal-cutting machines can be used as an external drive of the device. The friction machine was tested when measuring the wear rate and the value of the friction coefficient of the samples of cast iron SCh20, brass L63, technical aluminum A7, as well as modified aluminum A7 with improved mechanical characteristics. The materials were tested in tandem with a counter-sample made of hardened steel 95Kh18 according to the ball-ring scheme in dry friction mode and in boundary lubrication mode using I-20A industrial oil at a normal load of 50 N and a linear velocity in the contact zone of 0.5 m/sec. The wear degree was estimated by the weight loss. The obtained results are characterized by the sufficient accuracy and reproducibility. A severe wear of brass is observed at a given testing load. Tests of the aluminum samples modified with ultrafine diamond-graphite powder UDP-AG obtained from explosives showed an increase in the tribological characteristics by 10 – 18%.


2021 ◽  
Vol 11 (16) ◽  
pp. 7231
Author(s):  
Yanzhong Wang ◽  
Kai Yang ◽  
Xiangyu Wu

Wet clutch transmits its power by the friction torque between friction and separate disks. Conical groove friction disk is a new attempt in Wet clutch. Its configurations allow significant enhancement of torque delivery performances, compared with the traditional plane friction disk. In order to study the frictional performances of the conical groove friction configuration, the friction coefficient calculation model of conical groove friction disk was established, and experimental investigation was used to measure the friction coefficient under sliding velocity conditions. The influence of configuration parameters: cone heights and angles on friction coefficients were evaluated in a typical variable speed test. The results indicated that configuration parameters can affect friction performance in a constant speed period. The equivalent radius can directly describe the friction region of a conical groove friction disk. The constant speed test can be a useful method.


Author(s):  
Kingsford Koranteng ◽  
Joseph-Shaahu Shaahu ◽  
Ma Chengnan ◽  
Heyan Li ◽  
Yun-Bo Yi

An enhanced Cu-based friction material was prepared by the powder metallurgy techniques and proposed for use in the dry clutch system. The friction characteristics and wear rate of this friction material sliding against 65Mn steel are obtained using Universal Material Tester-5. The friction pairs were subjected to two operating variables, which are sliding speed and temperature. The effect of these variables during the engagement process of the friction pairs is investigated. Knowing the normal applied force and dimension of the clutch disc, the dynamic friction coefficient was translated to friction torque capacity with time. It was found that instability can be excited at low operational conditions when the resulting friction coefficient is high. At 25 ℃, the dynamic friction torque oscillates with time likewise at 400 ℃. Generally, a more stable friction torque is obtained when the sliding speed is varied compared to varying the temperatures. Moreover, the influence of the operating temperatures and sliding speeds on thermal buckling and thermoelastic instability of the friction disc is the second consideration in this work. The onset of thermoelastic instability occurs when the sliding speed exceeded 200 r/min and the results for the growth rate of hot spots were found to agree well with the critical speed of the system. Also, thermal buckling was highly dependent on the temperature difference between the inner and outer radius of the friction disc.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 857
Author(s):  
Ahmed Fouly ◽  
Ahmed Mohamed Mahmoud Ibrahim ◽  
El-Sayed M. Sherif ◽  
Ahmed M.R. FathEl-Bab ◽  
A.H. Badran

Denture base materials need appropriate mechanical and tribological characteristics to endure different stresses inside the mouth. This study investigates the properties of poly(methyl methacrylate) (PMMA) reinforced with different low loading fractions (0, 0.2, 0.4, 0.6, and 0.8 wt.%) of hydroxyapatite (HA) nanoparticles. HA nanoparticles with different loading fractions are homogenously dispersed in the PMMA matrix through mechanical mixing. The resulting density, Compressive Young’s modulus, compressive yield strength, ductility, fracture toughness, and hardness were evaluated experimentally; the friction coefficient and wear were estimated by rubbing the PMMA/HA nanocomposites against stainless steel and PMMA counterparts. A finite element model was built to determine the wear layer thickness and the stress distribution along the nanocomposite surfaces during the friction process. In addition, the wear mechanisms were elucidated via scanning electron microscopy. The results indicate that increasing the concentration of HA nanoparticles increases the stiffness, compressive yield strength, toughness, ductility, and hardness of the PMMA nanocomposite. Moreover, tribological tests show that increasing the nanoparticle weight fraction considerably decreases the friction coefficient and wear loss.


Friction ◽  
2020 ◽  
Author(s):  
Rongxin Chen ◽  
Jiaxin Ye ◽  
Wei Zhang ◽  
Jiang Wei ◽  
Yan Zhang ◽  
...  

Abstract The tribological characteristics of cotton fibers play an important role in engineering and materials science, and real contact behavior is a significant aspect in the friction behavior of cotton fibers. In this study, the tribological characteristics of cotton fibers and their relationship with the real contact behavior are investigated through reciprocating linear tribotesting and real contact analysis. Results show that the friction coefficient decreases with a general increase in load or velocity, and the load and velocity exhibit a co-influence on the friction coefficient. The dynamic change in the real contact area is recorded clearly during the experiments and corresponds to the fluctuations observed in the friction coefficient. Moreover, the friction coefficient is positively correlated with the real contact area based on a quantitative analysis of the evolution of friction behavior and the real contact area at different loads and velocities. This correlation is evident at low velocities and medium load.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Wenpeng Wei ◽  
Hussein Dourra ◽  
Guoming Zhu

Abstract Transfer case clutch is crucial in determining traction torque distribution between front and rear tires for four-wheel-drive (4WD) vehicles. Estimating time-varying clutch surface friction coefficient is critical for traction torque control since it is proportional to the clutch output torque. As a result, this paper proposes a real-time adaptive lookup table strategy to provide the time-varying clutch surface friction coefficient. Specifically, the clutch-parameter-dependent (such as clutch output torque and clutch touchpoint distance) friction coefficient is first estimated with available low-cost vehicle sensors (such as wheel speed and vehicle acceleration); and then a clutch-parameter-independent approach is developed for clutch friction coefficient through a one-dimensional lookup table. The table nodes are adaptively updated based on a fast recursive least-squares (RLS) algorithm. Furthermore, the effectiveness of adaptive lookup table is demonstrated by comparing the estimated clutch torque from adaptive lookup table with that estimated from vehicle dynamics, which achieves 14.8 Nm absolute mean squared error (AMSE) and 2.66% relative mean squared error (RMSE).


2004 ◽  
Vol 127 (4) ◽  
pp. 631-636 ◽  
Author(s):  
Donald R. Flugrad ◽  
Abir Z. Qamhiyah

Traction-drive speed reducers offer certain advantages over geared speed reducers. In particular, they generally run quieter than geared units and provide an opportunity for higher efficiency by eliminating sliding motion between contacting elements. In order to generate a sufficiently high output torque, some means must be provided to create a normal force between the rolling elements. This normal force, along with the friction coefficient, enables the device to transmit torque from one rolling member to the next. The speed reducer proposed here is designed so that the configuration of the rolling elements creates the needed normal force in response to the torque exerted back on the system by the downstream loading. Thus the device is self-actuating. Since the normal force is only present when needed, the rolling elements of the device can readily be disengaged, thus eliminating the need for a separate clutch in the drive system. This feature can be exploited to design a transmission with several distinct speed ratios that can be engaged and disengaged in response to changing speed requirements.


2020 ◽  
Vol 56 (20) ◽  
pp. 155
Author(s):  
YU Liang ◽  
MA Biao ◽  
CHEN Man ◽  
ZHANG Cunzhen ◽  
WU Junfeng

2018 ◽  
Vol 18 (18) ◽  
pp. 18-23 ◽  
Author(s):  
Sandra Veličković ◽  
Slavica Miladinović ◽  
Blaža Stojanović ◽  
Ružica R. Nikolić ◽  
Branislav Hadzima ◽  
...  

Abstract Hybrid materials with the metal matrix are important engineering materials due to their outstanding mechanical and tribological properties. Here are presented selected tribological properties of the hybrid composites with the matrix made of aluminum alloy and reinforced by the silicon carbide and graphite particles. The tribological characteristics of such materials are superior to characteristics of the matrix – the aluminum alloy, as well as to characteristics of the classical metal-matrix composites with a single reinforcing material. Those characteristics depend on the volume fractions of the reinforcing components, sizes of the reinforcing particles, as well as on the fabrication process of the hybrid composites. The considered tribological characteristics are the friction coefficient and the wear rate as functions of the load levels and the volume fractions of the graphite and the SiC particles. The wear rate increases with increase of the load and the Gr particles content and with reduction of the SiC particles content. The friction coefficient increases with the load, as well as with the SiC particles content increase.


2019 ◽  
Vol 72 (4) ◽  
pp. 541-548 ◽  
Author(s):  
Liang Yu ◽  
Biao Ma ◽  
Man Chen ◽  
He Yan Li ◽  
Jikai Liu

Purpose This paper aims to study and compare the friction stability of wet paper-based clutches with regard to the radial grooves (RG) and waffle grooves (WG). Design/methodology/approach This paper presents an experimental study of a wet clutch concerning the effect of groove patterns on the friction torque and surface temperature. The friction stabilities of RG and WG are investigated with the applied pressure, rotating speed and automatic transmission fluid (ATF) temperature taken into consideration. Findings The friction torque and surface temperature of WG are larger than those of RG under the same operating condition. The friction torque difference between RG and WG grows with the increase of applied pressure and narrows with the increase of ATF temperature. Additionally, their temperature difference expands via increasing the rotating speed and ATF temperature or reducing the applied pressure; in this way, not only the variable coefficient difference between RG and WG can be narrowed, but also the friction stability of the clutch can be improved dramatically. Originality/value This paper explains the thermodynamic differences between RG and WG; moreover, it is verified experimentally that WG has a better friction stability than RG.


Sign in / Sign up

Export Citation Format

Share Document