scholarly journals Thermal and Microstructure Study of the Chip Formation During Turning of Ti64 β Lamellar Titanium Structure

Author(s):  
Vincent Wagner ◽  
Floran Barelli ◽  
Gilles Dessein ◽  
Raynald Laheurte ◽  
Phillipe Darnis ◽  
...  

In recent years, many titanium alloys have emerged, each of them associated with a range of different heat treatments. Thus, several microstructures have been studied to varying degrees. For example, the Ti64 titanium alloy, mostly known for its α + β structure, can display a different state: the structure, inducing nonstandard mechanical behavior. This work presents chip formation in this specific microstructure where a strong heterogeneity is observed and where the shear band formation is a function of the relationship between the shear direction and the microstructure orientation. From these reasons, major differences are found in the chip morphology, within the same cutting condition, in comparison to the bimodal structure where a single chip morphology is obtained for each cutting condition. A section of this paper is devoted to the presentation of the β microstructure where different configurations can be seen within the same chip. Next, the influence of cutting conditions on the chip formation is studied. To highlight the specific chip formation process, a temperature model has been developed and combined with cutting force analysis to understand clearly the specificity of the chip formation for this structure. Finally, the discussion explains the different chip formation scenarios according to the workpiece microstructure to be cut.

2010 ◽  
Vol 139-141 ◽  
pp. 743-747
Author(s):  
Chun Zheng Duan ◽  
Hai Yang Yu ◽  
Min Jie Wang ◽  
Bing Yan ◽  
Yu Jun Cai

The development of chip morphology, critical cutting condition of adiabatic shear during serrated chip formation and cutting forces were observed and measured by high speed turning experiment for 30CrNi3MoV hardened steel. Results show that the cutting speed and rake angle are leading factors to influence chip morphology and cutting forces. With the increase of cutting speed, the continuous band chip transforms into serrated chip at a certain critical value. As the rake angle is changed from positive to negative, the critical cutting speed of adiabatic shear significantly decreases, the cutting forces abruptly reduces when the serrated chip forms. The results from predicting critical cutting speed using the critical cutting condition criterion of adiabatic shear in metal cutting process show that the leading reason of serrated chip formation is that the adiabatic shear fracture repeatedly occurs in the primary shear zone.


2020 ◽  
pp. 81-86
Author(s):  
Yu.G. Kabaldin ◽  
D.A. Shatagin ◽  
M.S. Anosov ◽  
A.M. Kuz'mishina

The formation of chips during the processing of various materials was studied. The relationship between the type of chips, the type of crystal lattice of the material and the number of sliding systems is shown. A neural network model of chip formation is developed, which allows predicting the type of chips. An intelligent control system for the process of chip formation during cutting is proposed. Keywords: chip formation, crystal lattice, neural network model, type of chips. [email protected]


2013 ◽  
Vol 333-335 ◽  
pp. 1558-1563
Author(s):  
Ling Bin Tan ◽  
Hai Yan Ji

After studying the relationship between the moisture content of crops and their relative permittivity, the principle of capacitive sensor and the research results of measuring micro-capacitance, this paper summarizes the theoretical basis of dielectric properties of grain, the dielectric properties of wheat, corn and rice, the relationship between the dielectric properties of these crops and their water content. With these theory analyses, the paper gives a full look on the grain moisture detection system by the means of dielectric properties, which consists of six parts, a cylindrical capacitor, signal conditioning circuits, single-chip control module with an A/D converter, temperature detection module, keyboard module and display module. The system is simple, and can adapt to extreme environment and accomplish the rapid detection in manufacturing. A description is given of the principle, its hardware circuit and software programming flow chart.


Author(s):  
Buo-Fu Chen ◽  
Christopher A. Davis ◽  
Ying-Hwa Kuo

AbstractIdealized numerical studies have suggested that in addition to vertical wind shear (VWS) magnitude, the VWS profile also affects tropical cyclone (TC) development. A way to further understand the VWS profile’s effect is to examine the interaction between a TC and various shear-relative low-level mean flow (LMF) orientations. This study mainly uses the ERA5 reanalysis to verify that, consistent with idealized simulations, boundary-layer processes associated with different shear-relative LMF orientations affect real-world TC’s intensity and size. Based on analyses of 720 TCs from multiple basins during 2004–2016, a TC affected by an LMF directed toward downshear-left in the Northern Hemisphere favors intensification, whereas an LMF directed toward upshear-right is favorable for expansion. Furthermore, physical processes associated with shear-relative LMF orientation may also partly explain the relationship between the VWS direction and TC development, as there is a correlation between the two variables.The analysis of reanalysis data provides other new insights. The relationship between shear-relative LMF and intensification is not significantly modified by other factors [inner-core sea surface temperature (SST), VWS magnitude, and relative humidity (RH)]. However, the relationship regarding expansion is partly attributed to environmental SST and RH variations for various LMF orientations. Moreover, SST is critical to the basin-dependent variability of the relationship between the shear-relative LMF and intensification. For Atlantic TCs, the relationship between LMF orientation and intensification is inconsistent with all-basin statistics unless the analysis is restricted to a representative subset of samples associated with generally favorable conditions.


2012 ◽  
Vol 446-449 ◽  
pp. 1360-1365
Author(s):  
Yong Qiang Gao ◽  
Jin Qiu Zhang ◽  
Jie Yue ◽  
Zhi Zhao Peng

Turbine composite regenerative damper is one of new type damper which can regenerate the energy of vibration. The component and principle of generator and regenerate energy for turbine composite regenerative damper is introduce, and based on hydrodynamics and axial turbine basic principle, the relationship between induced electromotive force and piston velocity ,load resistance is induced. At last, the relationship between damping force and piston velocity, load resistance is induced too. The method is meaningful to understand and instruct the design of turbine composite regenerative damper.


2013 ◽  
Vol 797 ◽  
pp. 461-468 ◽  
Author(s):  
Chao Chang Arthur Chen ◽  
Ching Hsiang Tseng ◽  
Wei Kang Tu

This paper is to design and developing a friction sensor system (FSS) for prediction of endpoint detection (EPD) on diamond lapping of sapphire or mono-crystalline aluminum oxide wafers. The endpoint detection usually includes start region, lapping region, transient region and endpoint region to control the planarization procedure by diamond lapping with variant plate of copper, resin copper, or tin materials. Experiments have been performed with 9 tests composed by three kinds of viscosity of slurry lapping with three kinds of lap plates. The coefficient of friction (CoF) has been obtained by the designed FSS and then compared with different test parameters. The as-lapped sapphire wafers have also measured by coherence surface interferometer, CCI-Lite (Taylor Hobson, UK). Experimental results show that the hardness of plate and viscosity of slurry are critical factors for as-lapped wafer quality. The EPD of diamond lapping with resin copper plate can be determined by the CoF data and that can be used for justifying the appropriate lapping time of sapphire wafers. Future study can focus on the relationship of sub-surface crack caused by the diamond lapping process.


Author(s):  
S Belhadi ◽  
T Mabrouki ◽  
J-F Rigal ◽  
L Boulanouar

The present paper is a contribution to the investigation of physical phenomena accompanying sawtooth chip formation in the case of hard turning. The study concerns the machining with coated carbide of tempered AISI 4340 steel with a Rockwell C hardness of 47 HRC. The main idea in this paper deals with the establishment of a direct relationship between serrated-chip morphology simultaneously with force component signals derived from acquisition at high frequency and with the width of facets detected on a workpiece machined surface. This experimental work was supported by a numerical simulation based on Abaqus/ Explicit software. Numerical results dealing with effect of temperature evolution on the chip morphology show that the beginning of the sawtooth chip initiation is due to an adiabatic shear at the tool tip with propagation pathway towards the free surface. In addition, computed results have a good corroboration with those obtained experimentally.


2011 ◽  
Vol 183-185 ◽  
pp. 1901-1906
Author(s):  
Wei Bin Rong ◽  
Dong Jie Li ◽  
Li Ning Sun ◽  
Jin Yu Wang

Due to influence of size effect, the force properties in nanoscale are greatly different from those in macroscale and the traditional models of operation are becoming difficult to meet the development of nanoscale manipulation. To provide guiding theory for practical nano-manipulation, the nanoscale forces of contact and non-contact operation of nanowires are analyzed for nano-manipulation in SEM. The Vander Waals models among the probe, nanowire and substrate are modeled according to the force properties in nanoscale, and then the simplified models are simulated with MATLAB. The influence degree of various factors and the relationship of them during the operation are obtained. At last, experimental system is established to verify the correctness of the proposed models.


2012 ◽  
Vol 505 ◽  
pp. 31-36 ◽  
Author(s):  
Moaz H. Ali ◽  
Basim A. Khidhir ◽  
Bashir Mohamed ◽  
A.A. Oshkour

Titanium alloys are desirable materials for aerospace industry because of their excellent combination of high specific strength, lightweight, fracture resistant characteristics, and general corrosion resistance. Therefore, the chip morphology is very important in the study of machinability of metals as well as the study of cutting tool wear. The chips are generally classified into four groups: continuous chips, chips with built-up-edges (BUE), discontinuous chips and serrated chips. . The chip morphology and segmentation play a predominant role in determining machinability and tool wear during the machining process. The mechanics of segmented chip formation during orthogonal cutting of titanium alloy Ti–6Al–4V are studied in detail with the aid of high-speed imaging of the chip formation zone. The finite element model of chip formation of Ti–6Al–4V is suggested as a discontinuous type chip at lower cutting speeds developing into a continuous, but segmented, chip at higher cutting speeds. The prediction by using finite-element modeling method and simulation process in machining while create chips formation can contribute in reducing the cost of manufacturing in terms of prolongs the cutting tool life and machining time saving.


2010 ◽  
Vol 154-155 ◽  
pp. 239-245
Author(s):  
Chong Yang Gao ◽  
Bin Fang ◽  
Yuan Tong Gu

In this paper, two ideal formation models of serrated chips, the symmetric formation model and the unilateral right-angle formation model, have been established for the first time. Based on the ideal models and related adiabatic shear theory of serrated chip formation, the theoretical relationship among average tooth pitch, average tooth height and chip thickness are obtained. Further, the theoretical relation of the passivation coefficient of chip’s sawtooth and the chip thickness compression ratio is deduced as well. The comparison between these theoretical prediction curves and experimental data shows good agreement, which well validates the robustness of the ideal chip formation models and the correctness of the theoretical deducing analysis. The proposed ideal models may have provided a simple but effective theoretical basis for succeeding research on serrated chip morphology. Finally, the influences of most principal cutting factors on serrated chip formation are discussed on the basis of a series of finite element simulation results for practical advices of controlling serrated chips in engineering application.


Sign in / Sign up

Export Citation Format

Share Document