A Model of Mixed Lubrication Based on Non-Normalized Discretization and Its Application for Multilayered Materials

2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Qingbing Dong ◽  
Zhanjiang Wang ◽  
Dong Zhu ◽  
Fanming Meng ◽  
Lixin Xu ◽  
...  

This study presents a generalized model of mixed elastohydrodynamic lubrication, in which the dimensional Reynolds equation is discretized according to a modified differential scheme based on the full analysis of the pressure balance within the lubrication region. The model is capable of a wide range of lubrication regimes from fully hydrodynamic down to boundary lubrication, and both the steady-state and the time-dependent conditions can be considered. A simplified computational procedure is proposed for elliptical contacts without the ellipticity parameters specified. The evolution of lubrication behavior at startup and shutdown conditions is investigated and the transient effect of surface waviness is discussed. The model application is then extended to contacts of multilayered materials, and the effects of the layer stiffness and the fabrication methods on the stress fields and lubrication performance are analyzed. The conclusions may potentially provide some insightful information for the design and analysis of functional materials and their engineering structures.

2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Wei Pu ◽  
Dong Zhu ◽  
Jiaxu Wang

In this study, a modified mixed lubrication model is developed with consideration of machined surface roughness, arbitrary entraining velocity angle, starvation, and cavitation. Model validation is executed by means of comparison between the obtained numerical results and the available starved elastohydrodynamic lubrication (EHL) data found from some previous studies. A comprehensive analysis for the effect of inlet oil supply condition on starvation and cavitation, mixed EHL characteristics, friction and flash temperature in elliptical contacts is conducted in a wide range of operating conditions. In addition, the influence of roughness orientation on film thickness and friction is discussed under different starved lubrication conditions. Obtained results reveal that inlet starvation leads to an obvious reduction of average film thickness and an increase in interasperity cavitation area due to surface roughness, which results in significant increment of asperity contacts, friction, and flash temperature. Besides, the effect of entrainment angle on film thickness will be weakened if the two surfaces operate under starved lubrication condition. Furthermore, the results show that the transverse roughness may yield thicker EHL films and lower friction than the isotropic and longitudinal if starvation is taken into account. Therefore, the starved mixed EHL model can be considered as a useful engineering tool for industrial applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Francesco Bottiglione ◽  
Giuseppe Carbone ◽  
Leonardo De Novellis ◽  
Luigi Mangialardi ◽  
Giacomo Mantriota

We analyse in terms of efficiency and traction capabilities a recently patented traction drive, referred to as the double roller full-toroidal variator (DFTV). We compare its performance with the single roller full-toroidal variator (SFTV) and the single roller half-toroidal variator (SHTV). Modeling of these variators involves challenging tribological issues; the traction and efficiency performances depend on tribological phenomena occurring at the interface between rollers and disks, where the lubricant undergoes very severe elastohydrodynamic lubrication regimes. Interestingly, the DFTV shows an improvement of the mechanical efficiency over a wide range of transmission ratios and in particular at the unit speed ratio as in such conditions in which the DFTV allows for zero-spin, thus strongly enhancing its traction capabilities. The very high mechanical efficiency and traction performances of the DFTV are exploited to investigate the performance of a flywheel-based Kinetic Energy Recovery System (KERS), where the efficiency of the variator plays an important role in determining the overall energy recovery performance. The energy boost capabilities and the round-trip efficiency are calculated for the three different variators considered in this study. The results suggest that the energy recovery potential of the mechanical KERS can be improved with a proper choice of the variator.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Xiao-Liang Yan ◽  
Yu-Yan Zhang ◽  
Guo-Xin Xie ◽  
Xiao-Qiong Du ◽  
Fen Qin

Predicting the mixed thermal lubrication performance and fatigue life of point contact components becomes more and more important with the increasing demand for the load capacity of machinery. To achieve this, a deterministic mixed thermal elastohydrodynamic lubrication (TEHL) model in point contacts considering surface roughness is developed in this study. This model is capable of determining the pressure and temperature under different lubrication regimes from mixed to full-film lubrication. Then, the established model is extended to the subsurface stress and fatigue life predictions. Numerical simulations are conducted to analyze the lubrication characteristics and fatigue life for the three-dimensional (3D) sinusoidal surfaces with variable directions. Results show that increasing entraining velocity contributes to the reduction of pressure fluctuation and prolongation of fatigue life. However, the resulting temperature increases with the entraining velocity. As for the influence of lubricant viscosity, increasing it prolongs the fatigue life, especially under mixed TEHL conditions. What's more, the effect of rough surface texture feature on fatigue life has a close relationship with the lubrication regime.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Tao He ◽  
Dong Zhu ◽  
Jiaxu Wang ◽  
Q. Jane Wang

The Stribeck curve is an important means to demonstrate the frictional behavior of a lubricated interface during the entire transition from boundary and mixed to full-film lubrication. In the present study, a new test apparatus has been built that can operate under rolling–sliding conditions at a continuously variable speed in an extremely wide range, approximately from 0.00006 to 60 m/s, covering six orders of magnitude. Hence, a complete Stribeck curve can be measured to reveal its basic characteristics for lubricated counterformal contacts. The measured curves are compared with numerical simulation results obtained from an available unified mixed elastohydrodynamic lubrication (EHL) model that is also capable of handling cases during the entire transition. A modified empirical model for the limiting shear stress of lubricant is obtained, and a good agreement between the measured and calculated Stribeck curves is achieved for the tested base oils in all the three lubrication regimes, which thus well validates the simulation methods employed. Both the experimental and numerical results indicate that the Stribeck curves for counterformal contact interfaces behave differently from those for conformal contacts. When the rolling speed increases at a fixed slide-to-roll ratio, the friction continuously decreases even in the full-film lubrication regime due to the reduction of the lubricant limiting shear stress caused mainly by the rise of the surface flash temperature. In addition, the test results indicate that the boundary additives in a commodity lubricant may have considerable influence on the boundary lubrication friction but that on the friction in the mixed and full-film lubrication appears to be limited.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1422
Author(s):  
Viktor V. Revin ◽  
Alexander V. Dolganov ◽  
Elena V. Liyaskina ◽  
Natalia B. Nazarova ◽  
Anastasia V. Balandina ◽  
...  

Currently, there is an increased demand for biodegradable materials in society due to growing environmental problems. Special attention is paid to bacterial cellulose, which, due to its unique properties, has great prospects for obtaining functional materials for a wide range of applications, including adsorbents. In this regard, the aim of this study was to obtain a biocomposite material with adsorption properties in relation to fluoride ions based on bacterial cellulose using a highly productive strain of Komagataeibacter sucrofermentans H-110 on molasses medium. Films of bacterial cellulose were obtained. Their structure and properties were investigated by FTIR spectroscopy, NMR, atomic force microscopy, scanning electron microscopy, and X-ray structural analysis. The results show that the fiber thickness of the bacterial cellulose formed by the K. sucrofermentans H-110 strain on molasses medium was 60–90 nm. The degree of crystallinity of bacterial cellulose formed on the medium was higher than on standard Hestrin and Schramm medium and amounted to 83.02%. A new biocomposite material was obtained based on bacterial cellulose chemically immobilized on its surface using atomic-layer deposition of nanosized aluminum oxide films. The composite material has high sorption ability to remove fluoride ions from an aqueous medium. The maximum adsorption capacity of the composite is 80.1 mg/g (F/composite). The obtained composite material has the highest adsorption capacity of fluoride from water in comparison with other sorbents. The results prove the potential of bacterial cellulose-based biocomposites as highly effective sorbents for fluoride.


Friction ◽  
2021 ◽  
Author(s):  
Luyao Gao ◽  
Xiaoduo Zhao ◽  
Shuanhong Ma ◽  
Zhengfeng Ma ◽  
Meirong Cai ◽  
...  

AbstractSilicone elastomers-based materials have been extensively involved in the field of biomedical devices, while their use is extremely restricted due to the poor surface lubricity and inherent hydrophobicity. This paper describes a novel strategy for generating a robust layered soft matter lubrication coating on the surface of the polydimethylsiloxane (PDMS) silicone elastomer, by entangling thick polyzwitterionic polyelectrolyte brush of poly (sulfobetaine methacrylate) (PSBMA) into the sub-surface of the initiator-embedded stiff hydrogel coating layer of P(AAm-co-AA-co-HEMA-Br)/Fe, to achieve a unified low friction and high load-bearing properties. Meanwhile, the stiff hydrogel layer with controllable thickness is covalently anchored on the surface of PDMS by adding iron powder to provide catalytic sites through surface catalytically initiated radical polymerization (SCIRP) method and provides high load-bearing capacity, while the topmost brush/hydrogel composite layer is highly effective for aqueous lubrication. Their synergy effects are capable of attaining low friction coefficient (COFs) under wide range of loaded condition in water environment with steel ball as sliding pair. Furthermore, the influence of mechanical modulus of the stiff hydrogel layer on the lubrication performance of layered coating is investigated, for which the COF is the lowest only when the modulus of the stiff hydrogel layer well matches the PDMS substrate. Surprisingly, the COF of the modified PDMS could remain low friction (COF < 0.05) stably after encountering 50,000 sliding cycles under 10 N load. Finally, the surface wear characterizations prove the robustness of the layered lubricating coating. This work provides a new route for engineering lubricious silicon elastomer with low friction, high load-bearing capacity, and considerable durability.


2021 ◽  
Author(s):  
Yong Zheng ◽  
Changqing Wang ◽  
Chao Pu ◽  
Jiayu Gong ◽  
Fanming Meng

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1125
Author(s):  
Raluca Nicu ◽  
Florin Ciolacu ◽  
Diana E. Ciolacu

Nanocelluloses (NCs), with their remarkable characteristics, have proven to be one of the most promising “green” materials of our times and have received special attention from researchers in nanomaterials. A diversity of new functional materials with a wide range of biomedical applications has been designed based on the most desirable properties of NCs, such as biocompatibility, biodegradability, and their special physicochemical properties. In this context and under the pressure of rapid development of this field, it is imperative to synthesize the successes and the new requirements in a comprehensive review. The first part of this work provides a brief review of the characteristics of the NCs (cellulose nanocrystals—CNC, cellulose nanofibrils—CNF, and bacterial nanocellulose—BNC), as well as of the main functional materials based on NCs (hydrogels, nanogels, and nanocomposites). The second part presents an extensive review of research over the past five years on promising pharmaceutical and medical applications of nanocellulose-based materials, which have been discussed in three important areas: drug-delivery systems, materials for wound-healing applications, as well as tissue engineering. Finally, an in-depth assessment of the in vitro and in vivo cytotoxicity of NCs-based materials, as well as the challenges related to their biodegradability, is performed.


Author(s):  
X. Lachenal ◽  
P. M. Weaver ◽  
S. Daynes

Conventional shape-changing engineering structures use discrete parts articulated around a number of linkages. Each part carries the loads, and the articulations provide the degrees of freedom of the system, leading to heavy and complex mechanisms. Consequently, there has been increased interest in morphing structures over the past decade owing to their potential to combine the conflicting requirements of strength, flexibility and low mass. This article presents a novel type of morphing structure capable of large deformations, simply consisting of two pre-stressed flanges joined to introduce two stable configurations. The bistability is analysed through a simple analytical model, predicting the positions of the stable and unstable states for different design parameters and material properties. Good correlation is found between experimental results, finite-element modelling and predictions from the analytical model for one particular example. A wide range of design parameters and material properties is also analytically investigated, yielding a remarkable structure with zero stiffness along the twisting axis.


Author(s):  
J Q Yao ◽  
D Dowson

In this two-part paper we consider the elastohydrodynamic lubrication (EHL) of soft-layered solids representing elliptical contacts. The problem has not previously attracted much attention, partly due to the lack of an effective numerical procedure to solve the coupled non-linear system of equations, but it is essential to the proper design of bearings with soft elastomeric liners and the full understanding of synovial joint lubrication. In Part 1, the elasticity analysis for the surface deformation of a low elastic modulus layer on a hard-backing half-space under various forms of normal loadings is considered, by means of both the rigorous Hankel transform method and various simplifications. For layers of compressible materials (v ≤ 0.4), a generalized foundation model described by a second-order differential equation is proposed to represent the relationship between the surface deformation and the applied pressure. The empirical equation developed in this study is valid for a very wide range of the aspect ratio of the contact and provides an alternative way of modelling the elastic deformation without recourse to the often tedious integration in the numerical analysis of the EHL problem. The simplest form (constrained column model) of the equation, where the surface deformation is directly proportional to the local applied pressure, was found to be reasonably accurate for compressible thin layers (the aspect ratio 2b/ht ≥ 5 and Poisson's ratio v ≤ 0.4).


Sign in / Sign up

Export Citation Format

Share Document