Sizing Optimization of Pneumatic Actuation Systems Through Operating Point Analysis

2020 ◽  
Vol 143 (5) ◽  
Author(s):  
Vinícius Vigolo ◽  
Victor Juliano De Negri

Abstract This paper reports a study on the static and dynamic behavior of pneumatic actuation systems, resulting in a comprehensive view of the influence of the system parameters on the energy efficiency and dynamic performance. The operating point approach based on the steady-state analysis of a pneumatic actuation system is used for developing analytical expressions to describe the relationship between the piston diameter and the system performance, including displacement time, stroke end velocity, and energy efficiency. The validity of the proposed equations is demonstrated by comparison with results from a test rig. Sensitivity analysis using a nonlinear dynamic simulation model indicated that a specific operating region exists, where good energy efficiency and the maximum dynamic performance are achieved. Moreover, the results show that an oversized system becomes more inefficient in both energetic and dynamic aspects. The results obtained provide a very consistent foundation for developing a method for pneumatic system sizing.

2019 ◽  
Vol 9 (3) ◽  
pp. 531 ◽  
Author(s):  
Shanju Yang ◽  
Zhan Liu ◽  
Bao Fu

In this study, a cryogenic turbo-based refrigerator, with high-speed foil gas bearing turboexpander and plate-fin heat exchanger, was presented. For the cooling process of a cryogenic refrigerator is long and complex, the efficient simulation of the dynamic performance is vital for its evaluation and operation. It is difficult to achieve this purpose. Because the cryogenic refrigerator will go through great temperature changes, resulting in dynamic performances of components going to complexity. In this article, the turboexpander was simulated using CFX, and the matching models with expansion works of consumption and utilization were unified and modified. With numerical calculation of heat exchanger, the dynamic simulation model of the refrigerator was improved via MATLAB code. The calculation method of the required input energy of the refrigerator in cooling processes was proposed based on the simulation and integration. The energy efficiency and economy cost of the refrigerator were evaluated under different operation modes. The refrigerator with a motor was more stable than the one with a blower. The refrigerator was tested under different conditions, the results of which agreed well with simulation data. The simulation method is efficient to serve practical applications, improve energy efficiency and reduce costs.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3147
Author(s):  
Kiyoung Kim ◽  
Namdoo Kim ◽  
Jongryeol Jeong ◽  
Sunghwan Min ◽  
Horim Yang ◽  
...  

Many leading companies in the automotive industry have been putting tremendous effort into developing new powertrains and technologies to make their products more energy efficient. Evaluating the fuel economy benefit of a new technology in specific powertrain systems is straightforward; and, in an early concept phase, obtaining a projection of energy efficiency benefits from new technologies is extremely useful. However, when carmakers consider new technology or powertrain configurations, they must deal with a trade-off problem involving factors such as energy efficiency and performance, because of the complexities of sizing a vehicle’s powertrain components, which directly affect its energy efficiency and dynamic performance. As powertrains of modern vehicles become more complicated, even more effort is required to design the size of each component. This study presents a component-sizing process based on the forward-looking vehicle simulator “Autonomie” and the optimization algorithm “POUNDERS”; the supervisory control strategy based on Pontryagin’s Minimum Principle (PMP) assures sufficient computational system efficiency. We tested the process by applying it to a single power-split hybrid electric vehicle to determine optimal values of gear ratios and each component size, where we defined the optimization problem as minimizing energy consumption when the vehicle’s dynamic performance is given as a performance constraint. The suggested sizing process will be helpful in determining optimal component sizes for vehicle powertrain to maximize fuel efficiency while dynamic performance is satisfied. Indeed, this process does not require the engineer’s intuition or rules based on heuristics required in the rule-based process.


2014 ◽  
Vol 551 ◽  
pp. 337-343
Author(s):  
Hui Chen ◽  
Yong Ling Fu ◽  
Juan Chen ◽  
He Song Liu

With the development of the advanced precision-guided missile and anti-missile system, high precision, high penetration ability and Low energy consumption have become an important direction for the missile. A new missile electro-hydraulic actuation system with dual independent closed-loop is put forward with the trend of high performance and energy-saving, and then the operating principle and process are discussed. Finally the accurate mathematical model is established, and the influence of the different basic pressure on the dynamic performance is analyzed. The simulation results show that the new proposed scheme has made great improvements in reducing the zero-control current of the system, but the efficiency and performance of the actuation system should be considered integrated due to the decrease of the dynamic performance, so it is practical for the future development of the missile electro-hydraulic actuation system.


Author(s):  
Fengyu Liu ◽  
Li Chen ◽  
Jian Yao ◽  
Chunhao Lee ◽  
Chi-kuan Kao ◽  
...  

Clutch-to-clutch shift technology is a key enabler for fast and smooth gear shift process for multi gear transmissions. However, conventional hydraulic actuation systems for clutches have drawbacks of low efficiency, oil leakage and inadequate robustness. Electromechanical devices offer potential alternative actuators. In this paper, a novel motor driven wedge-based clutch actuator, featuring self-reinforcement, is proposed. The design concept and physical structure are thoroughly described. Dynamic models for the actuation system and vehicle powertrain are validated by experiments. Upshift and downshift processes at different engine throttle openings, clutch clearances and friction coefficients are discussed. The results show that, the self-reinforcement ratio is tested as 9.6; at the same time, the shift quality is comparable to that of the conventional hydraulic actuated clutch in automatic transmissions in terms of the shift duration (about 1 s) and vehicle jerk (<10 m/s3). Taking advantage of fast response of the actuation DC motor, the wedge-based actuator is robust dealing with uncertain clutch clearance and friction coefficient. Therefore, the wedge-based clutch actuator has potential to provide acceptable performance for clutch-to-clutch shift.


Author(s):  
S-H Park ◽  
J Lee ◽  
J Yoo ◽  
D Kim ◽  
K Park

The electromagnetic valve (EMV) actuation system is a new technology for improvement in fuel effciency and reduction in emissions in spark ignition (SI) engines. It can provide more flexibility in valve event control compared with conventional variable valve actuation devices. However, a more powerful and effcient actuator design is needed for this technology to be applied in mass production engines. This paper presents the effects of design and operating parameters on the static and dynamic performances of the actuator. Employing the finite element method (FEM), the flow pattern of the magnetic flux is analysed and the resultant magnetic forces of several cases of core and armature designs are calculated. A computer simulation model has been set up to identify the dynamic behaviour of the EMV system. The effects of external disturbances such as cylinder pressure, armature neutral position and current supply time are also analysed. To verify the accuracy of the simulation model, an experimental study is also carried out on a prototype actuator. It is found that there is relatively good agreement between the experimental data and the results from the simulation model. The newly designed actuator is successfully operated on the test bench up to about 6000 r/min, which is the range of rated speed of most production SI engines. Through the whole speed range, the actuator maintains good performance in valve timing and event control.


Author(s):  
Rajiv Chaudhary ◽  
◽  
Alok Kumar Singh

Tracking the path of development in different Engineering disciplines, it can be easily observed that, right from the primitive stage, several tools, devices, and techniques may be identified, which happened by virtue of the evolution of human intelligence, getting transformed into various engineering applications. Although, later different engineering disciplines evolved, where most of the exhaustive development could be undertaken in that discipline. Likewise, in the field of mechanical engineering to various types of mechanical systems, according to the requirement in that field, were developed, in order to provide support of mechanization. Prime movers used to be an important part of these mechanical systems, which provided energy input as well as actuation required for providing the machines the desired kinematics. Most of the mechanical systems developed has been operated by conventional engine system using one or other fuel. Apart from the actuation by mechanical means, there are other means also through which mechanical actuation with better control, flexibility, and manipulation may be utilized in mechanical systems. A different category of systems, called Mechatronic systems has been developed in the recent past, which involves the vivid scope of use of techniques, devices, and components generally used in various other engineering fields of electrical, electronics, hydraulics, and pneumatics, etc. Subsequently, there have been several inventions, design & development which have added new levels in every field. Mechanical systems have been generally composed of various mechanical elements, which are designed to follow certain kinematics. The performance of the Actuation system plays an important role in the overall performance of the mechanical systems. There are several alternative actuation systems, which are not mechanical. These actuation systems may be categorized into electrical, electronics, hydraulic and pneumatic types. The features of these actuation systems, are so peculiar, that typical kinematic movement may be manipulated that too with more precision. Better control of mechanical systems may be realized, which is otherwise difficult with mechanical systems. In this paper, an effort has been made to review the possibilities, prospects as well as scope with various actuation systems.


2021 ◽  

Сurrently Formula Student Motorsport competitions are actively gaining popularity in the world. These competitions are held exclusively for student teams whose goal is to develop, build and test racing cars. Competitions are divided into static and dynamic disciplines. The most important role among these disciplines is played by dynamic ones, which include such tests as: acceleration test, maneuverability, control accuracy, endurance race and energy efficiency. The main tasks of these tests are to pass various types of turns and difficult sections of the route.therefore, to get the best results, it is necessary to complete these tests in the shortest possible time. It is possible to achieve the desired result by achieving the best dynamic performance of the car. One of these problems solved in the design and manufacture of the Formula Student car is the problem of designing cross-stability stabilizers. Keywords Car "Formula Student" PNRPU, rear and front stabilizer bar, design, calculation, operation


2013 ◽  
Vol 481 ◽  
pp. 162-170
Author(s):  
Wei Liu ◽  
Jian Hua Wei ◽  
Bo Hu

In this work, one kind of proportional throttle cartridge valve which is based on hydraulic-feedback principle is studied comprehensively. A detailed precise mathematical model is built. Analysis of the model shows that the model varies greatly depending on the operating point chosen for the linearization. The influences of design parameters are studied through root locus method and several parameters are picked out which have great impact on the dynamic performance. Then an optimization based on iterative eigenvalue configuration is implemented. After the optimization, the performance of the valve is improved effectively.


Aerospace ◽  
2004 ◽  
Author(s):  
Tian-Bing Xu ◽  
Ji Su

An electroactive polymer-ceramic hybrid actuation system (HYBAS) was recently developed. The HYBAS demonstrates significantly-enhanced electromechanical performance by utilizing advantages of cooperative contributions of the electromechanical responses of an electrostrictive copolymer and an electroactive single crystal. The hybrid actuation system provides not only a new type of device but also a concept to utilize different electroactive materials in a cooperative and efficient method for optimized electromechanical performance. In order to develop an effective procedure to optimize the performance of a hybrid actuation system (HYBAS), a theoretical model has been developed, based on the elastic and electromechanical properties of the materials utilized in the system and on the configuration of the device. The model also evaluates performance optimization as a function of geometric parameters, including the length of the HYBAS and the thickness ratios of the constituent components. The comparison between the model and the experimental results shows a good agreement and validates the model as an effective method for the further development of high performance actuating devices or systems for various applications.


Author(s):  
Valeta Carol Chancey ◽  
Bradley A. Bumgardner ◽  
David D. Turner ◽  
Arlene M. Breaux-Sims ◽  
George T. Flowers ◽  
...  

The Multi-Axis Ride Simulator (MARS) facility is a versatile testing facility for the evaluation of vehicle motion effects on personnel and devices. It consists of a 6-DOF Stewart platform driven by a computer-controlled actuation system. An off-line strategy is used to correct the amplifier input and drive the table dynamic response to the desired trajectory. The capabilities and performance limits of the facility are described in detail. The off-line control strategy is also described and its performance evaluated with a series of experimental tests. The results are presented and discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document