Design and Prototyping of Rotational Bi-stable Mechanism Using Permanent Magnets

2021 ◽  
pp. 1-25
Author(s):  
Hyeon-Ho Yang ◽  
Jae-Hung Han

Abstract Diverse applications including switches, deployable structures, and reconfigurable robots can benefit from bi-stability characteristics. However, the complexity of implementation and the limitation of structure configuration make it difficult to apply conventional bi-stable mechanisms to the structures that require rotational bi-stability. In this paper, an implementation method using cylindrical magnets for the rotational bi-stable mechanism is proposed. The proposed bi-stable mechanism consists of a revolute joint with two links. It has rotational bi-stability through the magnetic force relationship between the array of magnets on each link. To identify the characteristics of the proposed bi-stable mechanism, a cylindrical permanent magnet is considered as an electromagnet model that consists of one ring with a virtual electric current. The magnetic field of the cylindrical permanent magnet can be calculated using Biot-Savart law. Similarly, the magnetic force between two cylindrical permanent magnets is calculated using Lorentz force law. The criteria of the magnet array for symmetric bi-stability are described and the potential energy diagram of the rotation link is considered as the performance criterion to identify the stable state. The proposed bi-stable mechanism was applied to the prototype of a deployable structure consisting of two links. The load testing of the structure against external torque was performed and it was obtained that the rotation link can stay within 5deg angle to the maximum load applied and was experimentally verified with good agreement.

Author(s):  
Hyeon-Ho Yang ◽  
Jae-Hung Han

Abstract Bi-stable mechanisms are systems with two distinct stable equilibrium positions within their range of operation. They are capable of steadily staying in positions without external power input and require less energy to move to the next stable state because of their snap-through behavior. Diverse applications including switches, deployable structures, and reconfigurable robots can benefit from bi-stability characteristics. However, the complexity of implementation and the limitation of structure configuration have made it difficult to apply conventional bi-stable mechanisms to the structures that require rotational bi-stability. Thus, in this paper, we proposed an implementation method using cylindrical magnets for the rotational bi-stable mechanism. The proposed bi-stable mechanism consists of a revolute joint with two links; one is the rotational link and the other is the fixed link. It has rotational bi-stability through the magnetic force relationship between the array of magnets on each link. To identify the characteristics of the proposed bi-stable mechanism, a cylindrical permanent magnet is considered as an electromagnet model that consists of one ring with a virtual electric current. Consequently, the magnetic field of the cylindrical permanent magnet can be calculated using Biot-Savart law. Similarly, the magnetic force between two cylindrical permanent magnets of the electromagnet model is calculated using Lorentz force law. The criteria of the magnet array for symmetric bi-stability are proposed and the potential energy diagram of the rotation link is considered as the performance criterion to identify the stable state.


Author(s):  
Lezhi Ye ◽  
Yulong Zhang ◽  
Mingguang Cao

To solve the problem of complex operating device and permanent magnets (PMs) demagnetization at high temperature, a new type of permanent magnet fluxed-switching coupler (PMC) with synchronous rotating adjuster is proposed. Its torque can be adjusted by rotating a switched flux angle between the adjuster and PMs along the circumferential direction. The structural feature and working principle of the PMC are introduced. The analytical model of the novel PMC was established. The torque curves are calculated in transient field by using the three-dimensional finite element method (3-D FEM). The temperature distribution of the novel PMC under rated condition is calculated by 3-D FEM, and the temperature distribution of the PM is compared with that of the conventional PMC. The simulation and test results show that the maximum temperature of copper disc and PM of the novel PMC are 100 °C and 48 °C respectively. The novel PMC can work stably for a long time under the maximum load condition.


2012 ◽  
Vol 271-272 ◽  
pp. 1636-1640
Author(s):  
Xiao Yan Tang ◽  
Zhong Yun ◽  
Chuang Xiang

The calculation model of the single turn rectangle current carrying coil was established. The theoretic formula for calculating the magnetic field intensity of any point in space was derived. For a pair of radial magnetizing permanent magnets, the formula for calculating the magnetic force of permanent magnet in the magnetic field was deduced based on the equivalent current theory of permanent magnet. According to the formula, the influencing factors and the changing rules for the magnetic force of permanent magnet can be seen directly: the current, the coil turns are proportional to its magnetic force, while the coupling distance is inversely proportional to its magnetic force.


Author(s):  
B. R. Nichols ◽  
P. E. Allaire ◽  
T. Dimond ◽  
J. Cao ◽  
S. Dousti

Active magnetic bearings (AMBs) have the well-documented advantage of reduced operational power losses when compared to conventional fluid-film bearings; however, they have yet to be widely adopted in industry due to the high initial costs of manufacturing and supporting power electronics. As AMBs look to become more cost competitive in more widely based applications, permanent magnet biased designs seek to reduce both the operating electrical power losses and the power electronic hardware costs while maintaining normal load and maximum load capacities. In these new designs, permanent magnet components are used to provide the necessary bias magnetic flux in the bearing usually provided by an electrical bias current in traditional all electromagnetic AMB designs. By eliminating electrical bias currents, operating electrical power losses can be significantly reduced while allowing for smaller, cheaper electronic components. This paper provides a comparison of the performance of permanent magnet biased thrust and radial bearing designs with conventional, all electromagnetic bearing designs. The thrust bearings are designed with nominal and maximum load capacities of 1,333 N and 4,000 N, while the radial bearings are designed with nominal and maximum load capacities of 1,000 N and 3,000 N. The shaft diameter is considered to be 70 mm for all bearings. Finite element modeling is used to calculate load capacities and operating electrical power requirements. Power requirements for a number of loads ranging from nominal to maximum capacity are presented for the permanent magnet biased and all electromagnetic bearing designs. A significant reduction in electrical power requirements under maximum load conditions is shown in the permanent magnet biased designs. This reduction is further magnified under nominal load conditions. Additionally, the number of pole wire turns and maximum wire currents are adjusted to realize even greater electrical power losses. The required bias magnetic flux can be generated with reduced wire currents by increasing the number of wire turns. While reducing wire currents also reduces electrical power requirements, the increase in wire turns increases the circuit induction. This increase in induction decreases the bearing slew rate and, in turn, the bandwidth. This study looks at a number of wire turns and current combinations. Tradeoffs between reduced electrical power losses and bearing bandwidth are presented and discussed. The permanent magnet biased AMB designs are shown to significantly reduce electrical power losses having the potential to improve overall machine efficiency. Implications of adopting this technology to both operating and manufacturing costs are discussed. The use of permanent magnets in AMBs is shown to make the costs of these systems more competitive with oil lubricated bearings when compared to conventional AMB designs.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1461-1468
Author(s):  
Ting Dong ◽  
Juyan Huang ◽  
Bing Peng ◽  
Ling Jian

The calculation accuracy of unbalanced magnetic forces (UMF) is very important to the design of rotor length, because it will effect the shaft deflection. But in some permanent magnet synchronous motors (PMSMs) with fractional slot concentrated windings (FSCW), the UMF caused by asymmetrical stator topology structure is not considered in the existing deflection calculation, which is very fatal for the operational reliability, especially for the PMSMs with the large length-diameter ratio, such as submersible PMSMs. Therefore, the part of UMF in the asymmetrical stator topology structure PMSMs caused by the choice of pole-slot combinations is analysized in this paper, and a more accurate rotor deflection calculation method is also proposed.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1381-1389
Author(s):  
Dezhi Chen ◽  
Chengwu Diao ◽  
Zhiyu Feng ◽  
Shichong Zhang ◽  
Wenliang Zhao

In this paper, a novel dual-stator permanent magnet machine (DsPmSynM) with low cost and high torque density is designed. The winding part of the DsPmSynM adopts phase-group concentrated-coil windings, and the permanent magnets are arranged by spoke-type. Firstly, the winding structure reduces the amount of copper at the end of the winding. Secondly, the electromagnetic torque ripple of DsPmSynM is suppressed by reducing the cogging torque. Furthermore, the dynamic performance of DsPmSynM is studied. Finally, the experimental results are compared with the simulation results.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 318
Author(s):  
Chunyan Li ◽  
Fei Guo ◽  
Baoquan Kou ◽  
Tao Meng

A permanent magnet synchronous motor (PMSM) based on the principle of variable exciting magnetic reluctance (VMRPMSM) is presented. The motor is equipped with symmetrical non-magnetic conductors on both sides of the tangential magnetized permanent magnets (PMs). By placing the non-magnetic conductor (NMC), the magnetic reluctance in the exciting circuit is adjusted, and the flux weakening (FW) of the motor is realized. Hence, the NMC is studied comprehensively. On the basis of introducing the motor structure, the FW principle of this PMSM is described. The shape of the NMC is determined by analyzing and calculating the electromagnetic force (EF) acting on the PMs. We calculate the magnetic reluctance of the NMC and research on the effects of the NMC on electromagnetic force, d-axis and q-axis inductance and FW performance. The critical speeds from the test of the no-load back electromotive force (EMF) verify the correctness of the NMC design. The analysis is corresponding to the test result which lays the foundation of design for this kind of new PMSM.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


2013 ◽  
Vol 448-453 ◽  
pp. 2114-2119 ◽  
Author(s):  
Izzeldin Idris Abdalla ◽  
Taib Ibrahim ◽  
Nursyarizal Mohd Nor

This paper describes a design optimization to achieve optimal performance of a two novel single-phase short-stroke tubular linear permanent magnet motors (TLPMMs) with rectangular and trapezoidal permanent magnets (PMs) structures. The motors equipped with a quasi-Halbach magnetized moving-magnet armature and slotted stator with a single-slot carrying a single coil. The motors have been developed for reciprocating compressor applications such as household refrigerators. It is observed that the TLPMM efficiency can be optimized with respect to the leading design parameters (dimensional ratios). Furthermore, the influence of mover back iron is investigated and the loss of the motor is computed. Finite element analysis (FEA) is employed for the optimization, and the optimal values of the ratio of the axial length of the radially magnetized magnets to the pole pitch as well as the ratio of the PMs outer radius-to-stator outer radius (split ratio), are identified.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3639
Author(s):  
Rundong Huang ◽  
Chunhua Liu ◽  
Zaixin Song ◽  
Hang Zhao

Electric machines with high torque density are needed in many applications, such as electric vehicles, electric robotics, electric ships, electric aircraft, etc. and they can avoid planetary gears thus reducing manufacturing costs. This paper presents a novel axial-radial flux permanent magnet (ARFPM) machine with high torque density. The proposed ARFPM machine integrates both axial-flux and radial-flux machine topologies in a compact space, which effectively improves the copper utilization of the machine. First, the radial rotor can balance the large axial forces on axial rotors and prevent them from deforming due to the forces. On the other hand, the machine adopts Halbach-array permanent magnets (PMs) on the rotors to suppress air-gap flux density harmonics. Also, the Halbach-array PMs can reduce the total attracted force on axial rotors. The operational principle of the ARFPM machine was investigated and analyzed. Then, 3D finite-element analysis (FEA) was conducted to show the merits of the ARFPM machine. Demonstration results with different parameters are compared to obtain an optimal structure. These indicated that the proposed ARFPM machine with Halbach-array PMs can achieve a more sinusoidal back electromotive force (EMF). In addition, a comparative analysis was conducted for the proposed ARFPM machine. The machine was compared with a conventional axial-flux permanent magnet (AFPM) machine and a radial-flux permanent magnet (RFPM) machine based on the same dimensions. This showed that the proposed ARFPM machine had the highest torque density and relatively small torque ripple.


Sign in / Sign up

Export Citation Format

Share Document