Thermal Spray Coating on Polymeric Composite for De-icing and Anti-icing Applications

Author(s):  
Alireza Rahimi ◽  
Mehdi Hojjati ◽  
Ali, A. Dolatabadi ◽  
Christian Moreau

Abstract This paper reports a novel method for fabrication of an electro-thermal heating element, as de-icer or anti-icer, for the polymer-based composites. The plasma spray technique was utilized for the deposition of a Nickel-Chrome-Aluminum-Yttrium (NiCrAlY) coating layer as a heating-element on top of the glass/epoxy composite. To improve the adhesion strength and deposition efficiency of the coatings and to protect the composite fibers during grit blasting and spraying, a woven wire stainless steel mesh was added to the composite substrates during the composite fabrication process. Metal mesh will act as an anchor to keep the coating on the surface. Two types of woven wire and two types of NiCrAlY powder with the fine and coarse particle size distributions were used. Good processing parameters for grit blasting and plasma spraying are identified. It is found that the surface modification method applied to the composite substrates prior to the coating process makes a significant improvement in the coating thickness uniformity and deposition efficiency. Several tests were conducted on the coated samples for determination of their mechanical and electrical properties. Using flat-wise tensile tests, it is shown that application of proper surface modification method and set of spray parameters could result in improving the coating bonding strength significantly. The electrical and thermal analyses of the coated samples are also performed. It is shown that the coated samples have a high capability in the generation of heat and can be used as a heating-element.

Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 401
Author(s):  
Noresah Said ◽  
Ying Siew Khoo ◽  
Woei Jye Lau ◽  
Mehmet Gürsoy ◽  
Mustafa Karaman ◽  
...  

In this work, several ultrafiltration (UF) membranes with enhanced antifouling properties were fabricated using a rapid and green surface modification method that was based on the plasma-enhanced chemical vapor deposition (PECVD). Two types of hydrophilic monomers—acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) were, respectively, deposited on the surface of a commercial UF membrane and the effects of plasma deposition time (i.e., 15 s, 30 s, 60 s, and 90 s) on the surface properties of the membrane were investigated. The modified membranes were then subjected to filtration using 2000 mg/L pepsin and bovine serum albumin (BSA) solutions as feed. Microscopic and spectroscopic analyses confirmed the successful deposition of AA and HEMA on the membrane surface and the decrease in water contact angle with increasing plasma deposition time strongly indicated the increase in surface hydrophilicity due to the considerable enrichment of the hydrophilic segment of AA and HEMA on the membrane surface. However, a prolonged plasma deposition time (>15 s) should be avoided as it led to the formation of a thicker coating layer that significantly reduced the membrane pure water flux with no significant change in the solute rejection rate. Upon 15-s plasma deposition, the AA-modified membrane recorded the pepsin and BSA rejections of 83.9% and 97.5%, respectively, while the HEMA-modified membrane rejected at least 98.5% for both pepsin and BSA. Compared to the control membrane, the AA-modified and HEMA-modified membranes also showed a lower degree of flux decline and better flux recovery rate (>90%), suggesting that the membrane antifouling properties were improved and most of the fouling was reversible and could be removed via simple water cleaning process. We demonstrated in this work that the PECVD technique is a promising surface modification method that could be employed to rapidly improve membrane surface hydrophilicity (15 s) for the enhanced protein purification process without using any organic solvent during the plasma modification process.


2004 ◽  
Vol 259-260 ◽  
pp. 592-595
Author(s):  
Zhen Long Wang ◽  
Yu Fang ◽  
Wan Sheng Zhao ◽  
K. Cheng

2010 ◽  
Vol 11 (2) ◽  
pp. 234-240 ◽  
Author(s):  
Niyaz Mohammad Mahmoodi ◽  
Fereshteh Moghimi ◽  
Mokhtar Arami ◽  
Firoozmehr Mazaheri

2021 ◽  
Author(s):  
D. Poirier ◽  
Y. Thomas ◽  
B. Guerreiro ◽  
M. Martin ◽  
M. Aghasibeig ◽  
...  

Abstract A novel powder modification method based on the simultaneous softening and agglomeration of steel powders via heat treatment in a rotary tube furnace has been investigated as a means to improve the cold sprayability of H13 tool steel powder. By adjusting starting powder size and shape as well as heat treatment conditions (maximum temperature, cooling rate, and atmosphere), cold spray of H13 powder went from virtually no deposition to the production of thick dense deposits with a deposition efficiency of 70%. Powder agglomeration, surface state, microstructure evolution, and softening are identified as key factors determining powder deposition efficiency and resulting deposit microstructure.


2009 ◽  
Vol 473 (1-2) ◽  
pp. 48-52 ◽  
Author(s):  
Lei Bi ◽  
Shangquan Zhang ◽  
Bin Lin ◽  
Shumin Fang ◽  
Changrong Xia ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
pp. 1-4

Todays, researchers are challenging with manufacturing polymeric nanocomposites reinforced with ceramic particles due to two inherent properties of ceramic reinforcement particles, particle agglomeration and incompatibility between hydrophilic ceramic particles and hydrophobic polymeric matrix. So in this study, we used nano-Hydroxyapatite (n-HA) as ceramic material and Stearic acid as amphiphilic material for coating n-HA, hydroxysteric acid (SA) surfactant was used for surface coating particles between the hydrophilic HA powders and the hydrophobic polymers. The surface modification and effect of this method were evaluated by by Fourier transformation infrared (FTIR), x-ray diffractometer (XRD), thermal gravimetric analysis (TGA) and Scanning electron microscopy (SEM). The result of FTIR showed that n-HA surfaces were modified successfully and the modification method had the proper grafting amount according to TGA due to this method of modification will be proper for coating reinforcement particles in polymeric matrix.


Sign in / Sign up

Export Citation Format

Share Document