scholarly journals Non-uniform porous structures and cycling control for optimized fixed-bed solar thermochemical water splitting

2021 ◽  
pp. 1-24
Author(s):  
Xiaoyu Dai ◽  
Sophia Haussener

Abstract Solar thermochemical redox cycles provide a sustainable pathway for solar fuel processing. If done in porous (ceria) structures, they can profit from faster reaction rates owned to the enhanced heat and mass transport characteristics. However, the exact porous structure and operating conditions significantly affect the performance. We present a transient volume-averaged fixed-bed model of a thermochemical redox reactor utilizing macroporous ceria. We studied the porosity-dependent (ε=0.4-0.9) and operating condition-dependent (solar concentration ratio, ratio of oxygen partial pressure to total pressure, gas flow rate) performance of the fixed-bed ceria redox cycle. Structures with large porosity (ε=0.9) showed better performance than low-porosity structures, owning to the enhanced heat absorption and resulting higher temperatures. We show that the cycle duration requires optimization according to the porosity of the structure. Two hours of operation for a structure with ε=0.75 resulted in the largest hydrogen production (115.78) if the single cycle duration was 240 s (i.e. 30 cycles in 2 hours), while nearly five times less was produced for a 15 times longer single cycle duration (i.e. 2 cycles in 2 hours). We subsequently introduced porous structures with different types of non-uniform porosity distributions. For an average porosity of ε=0.75, the most favorable non-uniform porosity media exhibited higher porosity at the boundaries and a denser core. The fuel production of the best non-uniform porous structure was six times larger compared to a uniform porous structure. Adjusting on top of this the cycling conditions, a 14.6 times production gain was achieved. This work suggests that under non-isothermal operation condition for macroporous ceria redox fixed-bed cycling, non-uniform porous structure with higher porosity boundaries and a dense core benefit fuel production and porosity-dependent cycle duration modulation can be used to increase performance.

2017 ◽  
Vol 33 (2) ◽  
Author(s):  
José R.G. Sánchez-López ◽  
Angel Martínez-Hernández ◽  
Aracely Hernández-Ramírez

AbstractCurrently, few processes can be considered practical alternatives to the use of petroleum for liquid fuel production. Among these alternatives, the Fischer-Tropsch synthesis (FTS) reaction has been successfully applied commercially. Nevertheless, many of the fundamentals of this process are difficult to understand because of its complexity, which depends strongly on the catalyst and the reactor design and operating conditions, as the reaction is seriously affected by mass and heat transport issues. Thus, studying this reaction system with transport phenomena models can help to elucidate the impact of different parameters on the reaction. According to the literature, modeling FTS systems with 1D models provides valuable information for understanding the phenomena that occur during this process. However, 2D models must be used to simulate the reactor to correctly predict the reactor variables, particularly the temperature, which is a critical parameter to achieve a suitable distribution of products during the reaction. Thus, this work provides a general resume of the current findings on the modeling of transport phenomena on a particle/pellet level in a tubular fixed-bed reactor.


Author(s):  
Xiang Ren ◽  
Miao Yu ◽  
Xiaohang Zhou ◽  
Qingwei Zhang ◽  
Jack Zhou

Research and development on artificial photosynthesis provide a new direction to obtain sustainable energy. To increase the artificial photosynthesis reaction rates and the efficiency of collecting the energy product, a novel artificial photosynthesis device was designed and developed to constrain the photosynthesis reactions in chitosan porous structure. Both 3D printing and molding-casting could be used in fabrication of chitosan structure on artificial photosynthesis devices. In molding and casting, the molds were made by acrylonitrile butadiene styrene (ABS) and polydimethylsiloxane (PDMS). Concurrently, 3D interconnected chitosan channels were built with a user-made heterogeneous 3D rapid prototyping machine, and the lyophilization method was used to generate the micro or nano pores inside the chitosan scaffold. After lyophilization, the pore size and porosity was generated by MATLAB image processing. CO2 absorption was simulated based on porous structures properties when import the chitosan into the artificial photosynthesis devices. The results suggested that chitosan porous structure is a good candidate to be an interface between atmosphere and micro-fluidic devices with biochemical reactions.


1990 ◽  
Vol 22 (1-2) ◽  
pp. 347-352 ◽  
Author(s):  
C. Paffoni ◽  
B. Védry ◽  
M. Gousailles

The Paris Metropolitan area, which contains over eight million inhabitants, has a daily output of about 3 M cu.meters of wastewater, the purification of which is achieved by SIAAP (Paris Metropolitan Area Sewage Service) in both Achères and Valenton plants. The carbon pollution is eliminated from over 2 M cu.m/day at Achères. In order to improve the quality of output water, its tertiary nitrification in fixed-bed reactors has been contemplated. The BIOFOR (Degremont) and BIOCARBONE (OTV) processes could be tested in semi-industrial pilot reactors at the CRITER research center of SIAAP. At a reference temperature of 13°C, the removed load is approximately 0.5 kg N NH4/m3.day. From a practical point of view, it may be asserted that in such operating conditions as should be at the Achères plant, one cubic meter of filter can handle the tertiary nitification of one cubic meter of purified water per hour at an effluent temperature of 13°C.


2021 ◽  
Vol 11 (2) ◽  
pp. 682
Author(s):  
Gabriele Seitz ◽  
Farid Mohammadi ◽  
Holger Class

Calcium oxide/Calcium hydroxide can be utilized as a reaction system for thermochemical heat storage. It features a high storage capacity, is cheap, and does not involve major environmental concerns. Operationally, different fixed-bed reactor concepts can be distinguished; direct reactor are characterized by gas flow through the reactive bulk material, while in indirect reactors, the heat-carrying gas flow is separated from the bulk material. This study puts a focus on the indirectly operated fixed-bed reactor setup. The fluxes of the reaction fluid and the heat-carrying flow are decoupled in order to overcome limitations due to heat conduction in the reactive bulk material. The fixed bed represents a porous medium where Darcy-type flow conditions can be assumed. Here, a numerical model for such a reactor concept is presented, which has been implemented in the software DuMux. An attempt to calibrate and validate it with experimental results from the literature is discussed in detail. This allows for the identification of a deficient insulation of the experimental setup. Accordingly, heat-loss mechanisms are included in the model. However, it can be shown that heat losses alone are not sufficient to explain the experimental results. It is evident that another effect plays a role here. Using Bayesian inference, this effect is identified as the reaction rate decreasing with progressing conversion of reactive material. The calibrated model reveals that more heat is lost over the reactor surface than transported in the heat transfer channel, which causes a considerable speed-up of the discharge reaction. An observed deceleration of the reaction rate at progressed conversion is attributed to the presence of agglomerates of the bulk material in the fixed bed. This retardation is represented phenomenologically by mofifying the reaction kinetics. After the calibration, the model is validated with a second set of experimental results. To speed up the calculations for the calibration, the numerical model is replaced by a surrogate model based on Polynomial Chaos Expansion and Principal Component Analysis.


2016 ◽  
Vol 14 (1) ◽  
pp. 491-515 ◽  
Author(s):  
Zeeshan Nawaz

AbstractThe catalytic dehydrogenation of iso-butane to iso-butylene is an equilibrium limited endothermic reaction and requires high temperature. The catalyst deactivates quickly, due to deposition of carbonaceous species and countered by periodic regeneration. The reaction-engineering constraints are tied up with operation and/or technology design features. CATOFIN® is a sophisticated commercialized technology for propane/iso-butane dehydrogenation using multiple adiabatic fixed-bed reactors having Cr2O3/Al2O3 as catalyst, that undergo cyclic operations (~18–30m); dehydrogenation, regeneration, evacuation, purging and reduction. It is always a concern, how to maintain CATOFIN® reactor at an optimum production, while overcoming gradual decrease of heat in catalyst bed and deactivation. A homogeneous one-dimensional dynamic reactor model for a commercial CATOFIN® fixed-bed iso-butane dehydrogenation reactor is developed in an equation oriented (EO) platform Aspen Custom Modeler (ACM), for operational optimization and process intensification. Both reaction and regeneration steps were modeled and results were validated. The model predicts the dynamic behavior and demonstrates the extent of catalyst utilization with operating conditions and time, coke formation and removal, etc. The model computes optimum catalyst bed temperature profiles, feed rate, pre-heating, rates for reaction and regeneration, fuel gas requirement, optimum catalyst amount, overall cycle time optimization, and suggest best operational philosophy.


2012 ◽  
Vol 1380 ◽  
Author(s):  
S. Bello-Teodoro ◽  
R. Pérez-Garibay

ABSTRACTA method, based in leaching with SO2, to process low grade pyrolusite minerals has shown good results at laboratory scale. After the separation of the solid impurities, the dissolved manganese is subsequently precipitated using the SO2/O2 gas mixture as oxidising agent. In this research it was obtained a mathematical model to estimate the oxidative precipitation process, as a function of temperature, pH and SO2 gas flow rate. It was found that pH and temperature have the main influence in the reaction rate. An optimal SO2 concentration in the mixture must be used to avoid generation of reductive conditions. It was observed a most efficient reaction with a low gas flow rate injection. The predicted reaction rates presents a good concordance with the experimental results (R2=0.97), showing a worthy potential for practical uses.


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
Amir Rahimi ◽  
Sogand Hamidi

In this study, the performance of a fixed–bed tubular reactor for the production of phthalic anhydride is mathematically analyzed. The conversion degree and reactor temperature values are compared with the measured one in a tubular reactor applied in Farabi petrochemical unit in Iran as well as reported data in the literature for a pilot plate. The comparisons are satisfactory. The effects of some operating parameters including reactor length, feed temperature, reactor pressure, and existence of an inert in the catalytic bed are investigated. The optimum value of each parameter is determined on the basis of the corresponding operating conditions.


Author(s):  
Jens Kamplade ◽  
Tobias Mack ◽  
Andre Küsters ◽  
Peter Walzel

The breakup process of threads from laminar operating rotary atomizer (LamRot) is in the scope of this investigation. A similarity trail is used to investigate the influence of the thread deformation within a cross-wind flow on the thread breakup process. The threads emerge from laminar open channel flow while the liquid viscosity, the flow rate, the pipe inclination towards the gravity as well as the cross-wind velocity is varied. The breakup length and drop size distribution are analyzed by a back-light photography setup. The results thus obtained are compared with results of previous examination by Schröder [1] and Mescher [2]. It is found that the breakup length decreases and that the drop size grows with rising cross-wind intensity, while the width of the drop size distribution increases. At the same operating conditions, the breakup length for laminar open channel flow is smaller compared to completely filled capillaries. In contrast to this observation, the drop size distribution remains nearly unchanged. The critical velocity for the transition from axisymmetric to wind-induced thread breakup was found to be smaller than for completely filled capillaries.


Author(s):  
Vincent G Gomes

Product separation and regeneration of sorbent was accomplished in a novel pressure swing reactor through pressurisation, adsorption, blowdown and purge steps. The switching from sorption to reaction to regeneration was tested in a two bed sorption/reaction apparatus. Models developed for the mass and momentum transfer in the catalyst bed and sorber, were solved using orthogonal collocation within the method of lines. The effects of operating conditions and cycle configurations on performance were assessed. The results from dynamic experiments with propene metathesis to produce ethene and 2-butene in a fixed-bed catalytic reactor were in agreement with model predictions. Both pressure and vacuum swing demonstrated that conversion and product quality can be enhanced by periodic cycling with greater separation obtained with vacuum swing. The separation of products help reduce the downstream processing costs of exit mixtures, enable reactant utilisation by recycling and improve product handling at subsequent stages. The efficacy of the periodic separating reactor in terms of conversion, product purity and recovery were investigated.


Author(s):  
Jingjing Luo ◽  
Dieter Brillert

Abstract Dry gas lubricated non-contacting mechanical seals (DGS), most commonly found in centrifugal compressors, prevent the process gas flow into the atmosphere. Especially when high speed is combined with high pressure, DGS is the preferred choice over other sealing alternatives. In order to investigate the flow field in the sealing gap and to facilitate the numerical prediction of the seal performance, a dedicated test facility is developed to carry out the measurement of key parameters in the gas film. Gas in the sealing film varies according to the seal inlet pressure, and the thickness of gas film depends on this fluctuated pressure. In this paper, the test facility, measurement methods and the first results of static pressure measurements in the sealing gap of the DGS obtained in the described test facility are presented. An industry DGS with three-dimensional grooves on the surface of the rotating ring, where experimental investigations take place, is used. The static pressure in the gas film is measured, up to 20 bar and 8,100 rpm, by several high frequency ultraminiature pressure transducers embedded into the stationary ring. The experimental results are discussed and compared with the numerical model programmed in MATLAB, the characteristic and magnitude of which have a good agreement with the numerical simulations. It suggests the feasibility of measuring pressure profiles of the standard industry DGS under pressurized dynamic operating conditions without altering the key components of the seal and thereby affecting the seal performance.


Sign in / Sign up

Export Citation Format

Share Document