Thermal Management Strategies for Embedded Electronic Components of Wearable Computers

1999 ◽  
Vol 122 (2) ◽  
pp. 98-106 ◽  
Author(s):  
Eric Egan ◽  
Cristina H. Amon

Wearable computers are rugged, portable computers that can be comfortably worn on the body and easily operated for maintenance applications. The recently developed process of Shape Deposition Manufacturing has created the opportunity to embed the electronics of wearable computers in a polymer composite substrate. As both a protective outer case and a conductive heat dissipating medium, the substrate satisfies two basic constraints of wearable computer design: ruggedness and cooling efficiency. One such application of embedded electronics is the VuMan3R, a wearable computer designed and manufactured at Carnegie Mellon University for aircraft maintenance. This paper combines finite element numerical simulations, physical experimentation, and analytical models to understand the thermal phenomena of embedded electronic design and to explore the thermal design space. Numerical models ascertain the effect of heat spreaders and polymer composite substrates on the thermal performance, while physical experimentation of an embedded electronic artifact ensures the accuracy of the numerical simulations and the practicality of the thermal design. Analytical models using thermal resistance networks predict the heat flow paths within the embedded electronic artifact as well as the role of conductive fillers used in polymer composites. [S1043-7398(00)00102-X]

Author(s):  
S. Khatiwada ◽  
N. Chouw ◽  
J.W. Butterworth

Pounding damage in major earthquakes has been observed frequently in the form of aesthetic, minor or major structural cracks and collapse of buildings. These observations have attracted many numerical and experimental studies that led to analytical models for simulating seismic pounding. This study considers pounding between two steel portal frames without a seismic gap. The first frame has a constant natural period while the second frame has variable stiffness and mass values. Five different ground motions are applied to eight combinations of adjacent frames using a shake table. Numerical simulations for the same configurations are carried out with five pounding force models, viz. linear viscoelastic model, modified linear viscoelastic model, nonlinear viscoelastic model, Hertzdamp model and modified Hertzdamp model. The contact element stiffness and coefficient of restitution for numerical models are determined experimentally. The amplification of maximum displacement of the first frame predicted by the numerical simulations is compared with the shake table results. It was found that the Hertzdamp model always overestimated the responses while the other four models also frequently overestimated the amplifications. The predictions from the four models were not significantly different. Since the linear viscoelastic model requires substantially less computation, compared with the other models this model is more suitable for numerical modelling of pounding responses. However, more study is required to refine the numerical models before building pounding can be modelled with enough confidence.


2010 ◽  
Vol 78 (1) ◽  
Author(s):  
P. Lhuissier ◽  
J.-P. Masse ◽  
L. Salvo ◽  
Y. Brechet

The mechanical behavior of thin sandwich beams with steel faces and porous polymer core have been investigated using quasistatic four-points bending. Classic sandwich models predicting the behavior and the failure modes are improved to fit the particular configuration of the structure. Numerical simulations were set up in order to investigate damage at large strain. Macroscopic results are compared with analytical models and numerical simulations. Two numerical models of the core allowed confrontation of local behavior with experiments. Criteria for localization and damaging depending on core architecture are proposed.


i-com ◽  
2007 ◽  
Vol 6 (2) ◽  
pp. 4-10
Author(s):  
Hendrik Witt

Benutzerschnittstellen für das Wearable Computing Paradigma unterscheiden sich signifikant von ihrem Pendant aus der Desktop Computing Welt. Dieser Artikel schlägt die Entwicklung eines systematischen Entwicklungsprozesses für die Erstellung von Benutzerschnittstellen für Wearable Computer und dessen Integrationsmöglichkeit in existierende und zukünftige Software-Entwicklungsmodelle vor. Zur Unterstützung der vorgeschlagenen Prozesse werden zwei spezielle Werkzeuge, das „WUI-Toolkit” und der „HotWire Primäraufgaben Simulator” verwendet, die speziell auf die Anforderungen des Wearable Computings im Bereich der Implementierungs- und anschließenden Evaluationsphase von Schnittstellen abgestimmt wurden.


Author(s):  
Bahaa Shaqour ◽  
Mohammad Abuabiah ◽  
Salameh Abdel-Fattah ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
...  

AbstractAdditive manufacturing is a promising tool that has proved its value in various applications. Among its technologies, the fused filament fabrication 3D printing technique stands out with its potential to serve a wide variety of applications, ranging from simple educational purposes to industrial and medical applications. However, as many materials and composites can be utilized for this technique, the processability of these materials can be a limiting factor for producing products with the required quality and properties. Over the past few years, many researchers have attempted to better understand the melt extrusion process during 3D printing. Moreover, other research groups have focused on optimizing the process by adjusting the process parameters. These attempts were conducted using different methods, including proposing analytical models, establishing numerical models, or experimental techniques. This review highlights the most relevant work from recent years on fused filament fabrication 3D printing and discusses the future perspectives of this 3D printing technology.


Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 150
Author(s):  
Yeon-Kyu Park ◽  
Geuk-Nam Kim ◽  
Sang-Young Park

The CANYVAL-C (CubeSat Astronomy by NASA and Yonsei using a virtual telescope alignment for coronagraph) is a space science demonstration mission that involves taking several images of the solar corona with two CubeSats—1U CubeSat (Timon) and 2U CubeSat (Pumbaa)—in formation flying. In this study, we developed and evaluated structural and thermal designs of the CubeSats Timon and Pumbaa through finite element analyses, considering the nonlinearity effects of the nylon wire of the deployable solar panels installed in Pumbaa. On-orbit thermal analyses were performed with an accurate analytical model for a visible camera on Timon and a micro propulsion system on Pumbaa, which has a narrow operating temperature range. Finally, the analytical models were correlated for enhancing the reliability of the numerical analysis. The test results indicated that the CubeSats are structurally safe with respect to the launch environment and can activate each component under the space thermal environment. The natural frequency of the nylon wire for the deployable solar panels was found to increase significantly as the wire was tightened strongly. The conditions of the thermal vacuum and cycling testing were implemented in the thermal analytical model, which reduced the differences between the analysis and testing.


Author(s):  
C-M Chen ◽  
R-F Fung

The dynamic equations of a micro-positioning Scott—Russell (SR) mechanism associated with two flexible hinges and an offset are developed to calculate output responses. Both rigid and flexible hinges are considered to explore the results. The main features in the kinematics of the SR mechanism are its displacement amplification and straight-line motion, which are widely needed in practical industries. The manufacturing inaccuracy of the SR mechanism definitely causes geometric offsets of flexure hinges, and affects displacement amplification and straight-line output motion. Analytical models based on kinematics and Hamilton's principle are derived to explore the variation of linearity ratio, magnification factor, and deviation factor due to various offsets and link lengths. From numerical simulations for the SR mechanism with various offsets of flexible hinges in the conditions of different link lengths, it is found that offsets of flexure hinges obviously affect the amplifying factor and linearity ratio, and appear to dominate the changes of magnification factors. Moreover, an analytical model is also used to predict magnification factors due to various offsets. Finally, some conclusions concerning the effects of offset on the performance of the SR mechanism are drawn.


2021 ◽  
Author(s):  
Kyriaki Drymoni ◽  
John Browning ◽  
Agust Gudmundsson

<p>Dykes and inclined sheets are known occasionally to exploit faults as parts of their paths, but the conditions that allow this to happen are still not fully understood. Here we report field observations from a well-exposed dyke swarm of the Santorini volcano, Greece, that show dykes and inclined sheets deflected into faults and the results of analytical and numerical models to explain the conditions for deflection. The deflected dykes and sheets belong to a local swarm of 91 dyke/sheet segments that was emplaced in a highly heterogeneous and anisotropic host rock and partially cut by some regional faults and a series of historic caldera collapses, the caldera walls providing, excellent exposures of the structures. The numerical models focus on a normal-fault dipping 65° with a damage zone composed of parallel layers or zones of progressively more compliant rocks with increasing distance from the fault rupture plane. We model sheet-intrusions dipping from 0˚ to 90˚ and with overpressures of alternatively 1 MPa and 5 MPa, approaching the fault. We further tested the effects of changing (1) the sheet thickness, (2) the fault-zone thickness, (3) the fault-zone dip-dimension (height), and (4) the loading by, alternatively, regional extension and compression. We find that the stiffness of the fault core, where a compliant core characterises recently active fault zones, has pronounced effects on the orientation and magnitudes of the local stresses and, thereby, on the likelihood of dyke/sheet deflection into the fault zone. Similarly, the analytical models, focusing on the fault-zone tensile strength and energy conditions for dyke/sheet deflection, indicate that dykes/sheets are most likely to be deflected into and use steeply dipping recently active (zero tensile-strength) normal faults as parts of their paths.</p>


2020 ◽  
Vol 321 ◽  
pp. 06012
Author(s):  
C. Ciszak ◽  
D. Monceau ◽  
C. Desgranges

In order to limit the ecological impact of air traffic and its operating costs, the aeronautical industry is looking for improving engines efficiencies and substitutes to high density Ni-based superalloys. Thus, a wider use of Ti-alloys operating at higher temperatures is one of the developed solutions. Being able to predict as accurately as possible the oxidation behavior of Ti-based components at high temperatures appears therefore crucial to improve their sizing and durability. Analytical models based on the solid-state diffusion laws can be found in the litterature. They are fairly accurate in most cases, but they reveal some intrinsic limitations in specific cases such as temperature transients or thin components. Numerical models were later developed to break down these limitations. First results from a new numerical tool called “PyTiOx” (still under development are presented here. They confirm the intrinsic limitations of analytical models. In the case of thin samples, the numerical model predicts an increase of scaling kinetic when metal becomes O-saturated, whereas analytical models do not.


2016 ◽  
Author(s):  
Andrew Dawson ◽  
Peter Düben

Abstract. This paper describes the rpe library which has the capability to emulate the use of arbitrary reduced floating-point precision within large numerical models written in Fortran. The rpe software allows model developers to test how reduced floating-point precision affects the result of their simulations without having to make extensive code changes or port the model onto specialised hardware. The software can be used to identify parts of a program that are problematic for numerical precision and to guide changes to the program to allow a stronger reduction in precision. The development of rpe was motivated by the strong demand for more computing power. If numerical precision can be reduced for an application under consideration while still achieving results of acceptable quality, computational cost can be reduced, since a reduction in numerical precision may allow an increase in performance or a reduction in power consumption. For simulations with weather and climate models, savings due to a reduction in precision could be reinvested to allow model simulations at higher spatial resolution or complexity, or to increase the number of ensemble members to improve predictions. rpe was developed with particular focus on the community of weather and climate modelling, but the software could be used with numerical simulations from other domains.


Sign in / Sign up

Export Citation Format

Share Document