High Temperature Brazing for Cobalt-Based Gas Turbine Components

Author(s):  
Wayne Greaves ◽  
Hans van Esch

A unique high temperature brazing process was developed for crack repair and surface restoration of cobalt superalloy components of industrial gas turbines. The repair method begins with a special cleaning operation consisting of both chemical and ultrahigh vacuum processes. A new high-temperature braze material, with a composition compatible with most of the common cobalt-based turbine alloys, was developed. The mechanical properties and weldability of the brazed material are comparable with those base alloys. Microstructural evaluation and mechanical testing confirmed the desired properties. Also, actual refurbishment applications of General Electric, Westinghouse, and ABB gas turbine components are shown.

Author(s):  
David Mitchell ◽  
Anand Kulkarni ◽  
Alex Lostetter ◽  
Marcelo Schupbach ◽  
John Fraley ◽  
...  

The potential for savings provided to worldwide operators of industrial gas turbines, by transitioning from the current standard of interval-based maintenance to condition-based maintenance may be in the hundreds of millions of dollars. In addition, the operational flexibility that may be obtained by knowing the historical and current condition of life-limiting components will enable more efficient use of industrial gas turbine resources, with less risk of unplanned outages as a result of off-parameter operations. To date, it has been impossible to apply true condition-based maintenance to industrial gas turbines because the extremely harsh operating conditions in the heart of a gas turbine preclude using the necessary advanced sensor systems to monitor the machine’s condition continuously. Siemens, Rove Technical Services, and Arkansas Power Electronics International are working together to develop a potentially industry-changing technology to build smart, self-aware engine components that incorporate embedded, harsh-environment-capable sensors and high temperature capable wireless telemetry systems for continuously monitoring component condition in the hot gas path turbine sections. The approach involves embedding sensors on complex shapes, such as turbine blades, embedding wireless telemetry systems in regions with temperatures that preclude the use of conventional silicon-based electronics, and successfully transmitting the sensor information from an environment very hostile to wireless signals. The results presented will include those from advanced, harsh environment sensor and wireless telemetry component development activities. In addition, results from laboratory and high temperature rig and spin testing will be discussed.


Author(s):  
N. B. Rothfuss

This paper discusses the common needs of different industrial-marine gas turbine systems for flexible power transmission coupling shafts and shows how the flexible diaphragm coupling has been successfully applied to such gas turbines as the TPM FT-4, G. E.’s LM2500 and several others. Most aircraft derivatives and the larger industrial gas turbines require lightweight, maintenance-free, quiet flexible couplings. The diaphragm coupling will fill this need if properly designed and applied. Materials and methods of making preliminary natural frequency calculations and computer modeling of the diaphragm coupling are also discussed.


Author(s):  
David Mitchell ◽  
Anand Kulkarni ◽  
Edward Roesch ◽  
Ramesh Subramanian ◽  
Andrew Burns ◽  
...  

The potential for savings provided to worldwide operators of industrial gas turbines, by transitioning from the current standard of interval-based maintenance to condition-based maintenance may be in the tens of millions of dollars per year. Knowledge of the historical and current condition of life-limiting components will enable more efficient use of industrial gas turbine resources via increased operational flexibility, with less risk of unplanned outages as a result of off-parameter operations. To date, it has been impossible to apply true condition-based maintenance to industrial gas turbines because the extremely harsh operating conditions in the heart of a gas turbine preclude using the necessary advanced sensor systems to monitor the machine’s condition continuously. The U.S. Department of Commerce’s National Institute of Standards and Technology – Advanced Technology Program (NIST-ATP) awarded the Joint Venture team of Siemens Power Generation, Inc. and MesoScribe Technologies, Inc. a four-year, $5.4 million program in November, 2004, titled Conformal, Direct-Write-Technology-Enabled, Wireless, Smart Turbine Components. The target was to develop a potentially industry-changing technology to build smart, self-aware engine components that incorporate embedded, harsh-environment-capable sensors and high temperature capable wireless telemetry systems for continuously monitoring component condition in both the compressor and turbine sections. The approach involves several difficult engineering challenges, including the need to embed sensors on complex shapes, such as turbine blades, embedding wireless telemetry systems in regions with temperatures that preclude the use of conventional silicon-based electronics, protecting both sensors and wireless devices from the extreme temperatures and environments of an operating gas turbine, and successfully transmitting the sensor information from an environment very hostile to wireless signals. The program included full-scale, F-class industrial gas turbine engine test demonstrations with smart components in both the compressor and turbine sections. The results of the development program and engine testing to date will be discussed.


1978 ◽  
Vol 100 (4) ◽  
pp. 576-585 ◽  
Author(s):  
K. W. Cuffe ◽  
P. K. Beatenbough ◽  
M. J. Daskavitz ◽  
R. J. Flower

This paper reviews Harrison Radiator’s various designs and improvements in the Industrial Gas Turbine Regenerator that it has been supplying over the past 20 years, and describes a new design regenerator intended for high cyclic and/or high temperature operation. Design improvements and surface changes have occurred to keep pace with the changing consumer’s requirements and application. These changes have been effective in improving the cyclic ability of the regenerator and in reducing the field maintenance required on the earlier models due to the changing mode of operation. The new regenerator design has been created to meet the changing requirements of the applications.


2007 ◽  
Vol 353-358 ◽  
pp. 1935-1938 ◽  
Author(s):  
Yasuhiro Yamazaki ◽  
T. Kinebuchi ◽  
H. Fukanuma ◽  
N. Ohno ◽  
K. Kaise

Thermal barrier coatings (TBCs), that reduce the temperature in the underlying substrate material, are an essential requirement for the hot section components of industrial gas turbines. Recently, in order to take full advantage of the potential of the TBC systems, experimental and analytical investigations in TBC systems have been performed. However there is a little information on the deformation behavior of the top coating. In addition, the effects of the thermal exposure and the process parameters on the mechanical properties of the top coating have never been clarified. From these backgrounds, the effects of the process variables in APS and the thermal exposure on the mechanical properties were investigated in order to optimize the APS process of top coatings. The experimental results indicated that the mechanical properties of the APS-TBC, i.e. the tensile strength and the elastic modulus, were significantly changed by the process variables and the long term thermal exposure. The microstructural investigation was also carried out and the relationship between the mechanical properties and the porosity was discussed.


Author(s):  
Michele Scervini ◽  
Catherine Rae

A new Nickel based thermocouple for high temperature applications in gas turbines has been devised at the Department of Material Science and Metallurgy of the University of Cambridge. This paper describes the new features of the thermocouple, the drift tests on the first prototype and compares the behaviour of the new sensor with conventional mineral insulated metal sheathed Type K thermocouples: the new thermocouple has a significant improvement in terms of drift and temperature capabilities. Metallurgical analysis has been undertaken on selected sections of the thermocouples exposed at high temperatures which rationalises the reduced drift of the new sensor. A second prototype will be tested in follow-on research, from which further improvements in drift and temperature capabilities are expected.


Author(s):  
Keisuke Makino ◽  
Ken-Ichi Mizuno ◽  
Toru Shimamori

NGK Spark Plug Co., Ltd. has been developing various silicon nitride materials, and the technology for fabricating components for ceramic gas turbines (CGT) using theses materials. We are supplying silicon nitride material components for the project to develop 300 kW class CGT for co-generation in Japan. EC-152 was developed for components that require high strength at high temperature, such as turbine blades and turbine nozzles. In order to adapt the increasing of the turbine inlet temperature (TIT) up to 1,350 °C in accordance with the project goals, we developed two silicon nitride materials with further unproved properties: ST-1 and ST-2. ST-1 has a higher strength than EC-152 and is suitable for first stage turbine blades and power turbine blades. ST-2 has higher oxidation resistance than EC-152 and is suitable for power turbine nozzles. In this paper, we report on the properties of these materials, and present the results of evaluations of these materials when they are actually used for CGT components such as first stage turbine blades and power turbine nozzles.


2021 ◽  
Author(s):  
M. A. Ancona ◽  
M. Bianchi ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
...  

Abstract Gas turbines are often employed in the industrial field, especially for remote generation, typically required by oil and gas production and transport facilities. The huge amount of discharged heat could be profitably recovered in bottoming cycles, producing electric power to help satisfying the onerous on-site energy demand. The present work aims at systematically evaluating thermodynamic performance of ORC and supercritical CO2 energy systems as bottomer cycles of different small/medium size industrial gas turbine models, with different power rating. The Thermoflex software, providing the GT PRO gas turbine library, has been used to model the machines performance. ORC and CO2 systems specifics have been chosen in line with industrial products, experience and technological limits. In the case of pure electric production, the results highlight that the ORC configuration shows the highest plant net electric efficiency. The average increment in the overall net electric efficiency is promising for both the configurations (7 and 11 percentage points, respectively if considering supercritical CO2 or ORC as bottoming solution). Concerning the cogenerative performance, the CO2 system exhibits at the same time higher electric efficiency and thermal efficiency, if compared to ORC system, being equal the installed topper gas turbine model. The ORC scarce performance is due to the high condensing pressure, imposed by the temperature required by the thermal user. CO2 configuration presents instead very good cogenerative performance with thermal efficiency comprehended between 35 % and 46 % and the PES value range between 10 % and 22 %. Finally, analyzing the relationship between capital cost and components size, it is estimated that the ORC configuration could introduce an economical saving with respect to the CO2 configuration.


Author(s):  
Bernhard Ćosić ◽  
Frank Reiss ◽  
Marc Blümer ◽  
Christian Frekers ◽  
Franklin Genin ◽  
...  

Abstract Industrial gas turbines like the MGT6000 are often operated as power supply or as mechanical drives. In these applications, liquid fuels like 'Diesel Fuel No.2' can be used either as main fuel or as backup fuel if natural gas is not reliably available. The MAN Gas Turbines (MGT) operate with the Advanced Can Combustion (ACC) system, which is capable of ultra-low NOx emissions for gaseous fuels. This system has been further developed to provide dry dual fuel capability. In the present paper, we describe the design and detailed experimental validation process of the liquid fuel injection, and its integration into the gas turbine package. A central lance with an integrated two-stage nozzle is employed as a liquid pilot stage, enabling ignition and start-up of the engine on liquid fuel only. The pilot stage is continuously operated, whereas the bulk of the liquid fuel is injected through the premixed combustor stage. The premixed stage comprises a set of four decentralized nozzles based on fluidic oscillator atomizers, wherein atomization of the liquid fuel is achieved through self-induced oscillations. We present results illustrating the spray, hydrodynamic, and emission performance of the injectors. Extensive testing of the burner at atmospheric and full load high-pressure conditions has been performed, before verification within full engine tests. We show the design of the fuel supply and distribution system. Finally, we discuss the integration of the dual fuel system into the standard gas turbine package of the MGT6000.


Author(s):  
Dieter Bohn ◽  
Nathalie Po¨ppe ◽  
Joachim Lepers

The present paper reports a detailed technological assessment of two concepts of integrated micro gas turbine and high temperature (SOFC) fuel cell systems. The first concept is the coupling of micro gas turbines and fuel cells with heat exchangers, maximising availability of each component by the option for easy stand-alone operation. The second concept considers a direct coupling of both components and a pressurised operation of the fuel cell, yielding additional efficiency augmentation. Based on state-of-the-art technology of micro gas turbines and solid oxide fuel cells, the paper analyses effects of advanced cycle parameters based on future material improvements on the performance of 300–400 kW combined micro gas turbine and fuel cell power plants. Results show a major potential for future increase of net efficiencies of such power plants utilising advanced materials yet to be developed. For small sized plants under consideration, potential net efficiencies around 70% were determined. This implies possible power-to-heat-ratios around 9.1 being a basis for efficient utilisation of this technology in decentralised CHP applications.


Sign in / Sign up

Export Citation Format

Share Document