Effect of the Environmental Conditions of Tropical Climates on the Performance Parameters of a Gas Turbine Power Generation Plant

2020 ◽  
Author(s):  
J. Fajardo ◽  
D. Barreto ◽  
T. Castro ◽  
I. Baldiris

Abstract It is known that high temperatures adversely affect the performance of gas turbines, but the effect of the combination of atmospheric conditions (temperature and relative humidity -RH-) on the operation of this type of system is unknown. In this work the effects of atmospheric conditions on the energy and exergy indicators of a power plant with gas turbine were studied. The indicators studied were the mass flow, the specific work consumed by the compressor, specific work produced by the turbine, the combustion gas temperature, the NO concentration, the net output power, the thermal efficiency, the heat rate, the specific consumption of fuel, the destruction of exergy and exergy efficiency. Among the results, it is noted that for each degree celsius that reduces the temperature of the air at the compressor inlet at constant relative humidity on average, the mass flow of dry air increases by 0.27 kg/s, the specific work consumed by the compressors decreases by 0.45%, the output power increases by 1.17% and the thermal efficiency increases by 0.8%, the exergy destruction increases by 0.72% and the exergy efficiency increases by 0.81%. In addition, humidity changes relative to high temperatures are detected more significantly than at low temperatures. The power plant studied is installed in Cartagena, Colombia and since it is not operating in the design environmental conditions (15 °C and 60% relative humidity) it experiences a loss of output power of 6140 kW and a drop in thermal efficiency of 5.12 %. These results allow considering the implementation of air cooling technologies at the compressor inlet to compensate for the loss of power at atmospheric air conditions.

Author(s):  
Duan Liqiang ◽  
Guo Yaofei ◽  
Pan Pan ◽  
Li Yongxia

Abstract The environmental conditions (air temperature and relative humidity) have a great impact on the power and efficiency of gas turbine combined cycle (GTCC) system. Using the intake air cooling technology can greatly improve the performance of GTCC system. On the base of the PG9351FA gas turbine combined cycle system, this article builds the models of both the GTCC system and a typical lithium bromide absorption refrigeration system using Aspen Plus software. The effects of compressor inlet air cooling with different environmental conditions on the GTCC system performance are studied. The research results show that using the inlet air cooling technology can obviously increase the output powers of both the gas turbine and the combined cycle power. When the ambient humidity is low, the efficiency of GTCC changes gently; while the ambient humidity is high, the GTCC system efficiency will decline substantially when water in the air is condensed and removed with the progress of cooling process. At the same ambient temperature, when the relative humidity of the environment is equal to 20%, the gas turbine output power is increased by 35.64 MW, with an increase of 16.32%, and the combined cycle output power is increased by 39.57 MW, with an increase of 11.34%. At an ambient temperature of 35°C, for every 2.5 °C drop in the compressor inlet air, the thermal efficiency of the gas turbine increases by 0.189% compared to before cooling.


Author(s):  
Farshid Zabihian ◽  
Alan S. Fung ◽  
Fabio Schuler

Gas turbine-based power plants are very sensitive to ambient conditions and their output power and efficiency can be decreased significantly with increase in the ambient temperature. Various compressor inlet air cooling systems have been proposed and utilized to reduce inlet air temperature to the system, including evaporative systems e.g. media and fogging, and mechanical cooling systems. In this work, different techniques for compressor inlet air cooling are briefly reviewed. Then, the fogging system employed in the Whitby cogeneration power plant is explained with particular attention to the location of the system installation. A model of the gas turbine-based cogeneration plant is also developed to simulate the Whitby cogeneration power plant. The effects of fogging compressor inlet air cooling system on the performance of the plant are investigated. The results indicate that at an ambient temperature of 30°C and relative humidity of 40% the inlet cooling of as high as 8.4°C is possible which can increase output power to more than 50 MW. Also, it is found that the model can predict the gas turbine exhaust temperature and the plant’s power production with the error level of lower than 0.5% and 3%, respectively.


2015 ◽  
Vol 76 (5) ◽  
Author(s):  
Alhassan Salami Tijani ◽  
Mohd Rashid Halim

The purpose of this paper is to study the performance of an existing open cycle gas turbine power plant at Putrajaya power station. At compressor inlet temperature of 298.90K, thermal efficiency of 31 % was observed for the existing or current cycle whiles the modified configuration yielded thermal efficiency of 45 %, this result in 14 % increase in thermal efficiency. At pressure ratio of 3.67, thermal efficiency of about 31.06% and 44% was recorded for the current cycle and regenerative cycle respectively. The efficiency of both cycles increase considerably with increase in pressure ratio, but at pressure ratio of about 7, only a small increase in efficiency for both cycles was observed. The optimum value of the efficiencies for both cycles that correspond to pressure ratio of 7 is 43.06 and 56% for the current cycle and the regenerative cycle respectively.


Author(s):  
Saeed Farokhi

In a modern gas turbine power plant, the axial exhaust diffuser accounts for up to 10% of the generator power. An unshrouded rotor, due to its highly energetic tip clearance flow, improves the pressure recovery characteristic of the exhaust diffuser, while the power production within the blading suffers a loss as a result of the tip leakage flow. In this paper, these conflicting trends are thermodynamically investigated and nondimensional expressions are derived which facilitate the task of a gas turbine system designer. Conservatively, 1% thermal efficiency gain results from elimination of the last rotor tip clearance flow. The corresponding increase in thermal efficiency of a modern gas turbine power plant due to enhanced diffuser pressure recovery is less than one percent.


2019 ◽  
Vol 23 (Suppl. 4) ◽  
pp. 1187-1197 ◽  
Author(s):  
Marek Jaszczur ◽  
Michal Dudek ◽  
Zygmunt Kolenda

One of the most advanced and most effective technology for electricity generation nowadays based on a gas turbine combined cycle. This technology uses natural gas, synthesis gas from the coal gasification or crude oil processing products as the energy carriers but at the same time, gas turbine combined cycle emits SO2, NOx, and CO2 to the environment. In this paper, a thermodynamic analysis of environmentally friendly, high temperature gas nuclear reactor system coupled with gas turbine combined cycle technology has been investigated. The analysed system is one of the most advanced concepts and allows us to produce electricity with the higher thermal efficiency than could be offered by any currently existing nuclear power plant technology. The results show that it is possible to achieve thermal efficiency higher than 50% what is not only more than could be produced by any modern nuclear plant but it is also more than could be offered by traditional (coal or lignite) power plant.


Author(s):  
Yoichiro Ohkubo ◽  
Osamu Azegami ◽  
Hiroshi Sato ◽  
Yoshinori Idota ◽  
Shinichiro Higuchi

A 300 kWe class gas turbine which has a two-shaft and simple-cycle has been developed to apply to co-generation systems. The gas turbine engine is operated in the range of about 30% partial load to 100% load. The gas turbine combustor requires a wide range of stable operations and low NOx characteristics. A double staged lean premixed combustor, which has a primary combustion duct made of Si3N4 ceramics, was developed to meet NOx regulations of less than 80 ppm (corrected at 0% oxygen). The gas turbine with the combustor has demonstrated superior low-emission performance of around 40 ppm (corrected at 0% oxygen) of NOx, and more than 99.5% of combustion efficiency between 30% and 100% of engine load. Endurance testing has demonstrated stable high combustion performance over 3,000 hours in spite of a wide compressor inlet air temperature (CIT) range of 5 to 35 degree C.. While increasing the gas generator turbine speed, the flow rate of primary fuel was controlled to hold a constant equivalence ratio of around 0.5 in the CIT range of more than 15 C. The output power was also decreased while increasing the CIT, in order to keep a constant temperature at the turbine inlet. The NOx decreases in the CIT range of more than 15 C. On the other hand, the NOx increases in the CIT range of less than 15 C when the output power was kept a constant maximum power. As a result, NOx emission has a peak value of about 40 ppm at 15 C.


Author(s):  
Clayton M. Grondahl ◽  
Toshiaki Tsuchiya

The introduction of a ceramic gas turbine component in commercial power generation service will require significant effort. A careful assessment of the power plant performance benefit achievable from the use of ceramic components is necessary to rationalize the priority of this development compared to other alternatives. This paper overviews a study in which the performance benefit from ceramic components was evaluated for an MS9001FA gas turbine in a combined cycle power plant configuration. The study was performed with guidelines of maintaining constant compressor inlet airflow and turbine exit NOx emissions, effectively setting the combustion reaction zone temperature. Cooling flow estimates were calculated to maintain standard design life expectancy of all components. Monolithic silicon nitride ceramic was considered for application to the transition piece, stage one and two buckets, nozzles and shrouds. Performance benefit was calculated both for ceramic properties at 1093C (2200F) and for the more optimistic 1315C (2400F) oxidatian limit of the ceramic. Hybrid ceramic-metal components were evaluated in the less optimistic case.


Author(s):  
H. Jericha ◽  
E. Go¨ttlich

The gas turbine system GRAZ CYCLE has been thoroughly studied in terms of thermodynamics and turbomachinery layout. What is to be presented here is a prototype design for an industrial size plant, suited for NG-fuel and coal and heavy fuel oil gasification products, capable to retain the CO2 from combustion and at the same time able to achieve maximum thermal efficiency. The authors hope for an international cooperation to make such a plant available within a few years.


1983 ◽  
Vol 105 (4) ◽  
pp. 859-864 ◽  
Author(s):  
J. A. C. Fortin ◽  
M. F. Bardon

An earlier study demonstrated the theoretical potential of the concept of injecting methanol into a gas turbine compressor inlet as a means of increasing cycle thermal efficiency. To attain the full potential of such a system, continuous shifting vapour/liquid equilibrium is required which would pose formidable difficulties in practice due to the presence of liquid in the compressor blading. This study evaluates a more practicable configuration in which the alcohol is injected between stages of a multistage machine so that, due to the higher air temperatures, evaporation is complete before the mixture enters subsequent stages. Through a computer analysis, it is shown that this arrangement would retain most of the potential of the concept while greatly reducing the design and operating problems.


Author(s):  
Mohsen Ghazikhani ◽  
Nima Manshoori ◽  
Davood Tafazoli

An industrial gas turbine has the characteristic that turbine output decreases on hot summer days when electricity demand peaks. For GE-F5 gas turbines of Mashad Power Plant when ambient temperature increases 1° C, compressor outlet temperature increases 1.13° C and turbine exhaust temperature increases 2.5° C. Also air mass flow rate decreases about 0.6 kg/sec when ambient temperature increases 1° C, so it is revealed that variations are more due to decreasing in the efficiency of compressor and less due to reduction in mass flow rate of air as ambient temperature increases in constant power output. The cycle efficiency of these GE-F5 gas turbines reduces 3 percent with increasing 50° C of ambient temperature, also the fuel consumption increases as ambient temperature increases for constant turbine work. These are also because of reducing in the compressor efficiency in high temperature ambient. Steam injection in gas turbines is a way to prevent a loss in performance of gas turbines caused by high ambient temperature and has been used for many years. VODOLEY system is a steam injection system, which is known as a self-sufficient one in steam production. The amount of water vapor in combustion products will become regenerated in a contact condenser and after passing through a heat recovery boiler is injected in the transition piece after combustion chamber. In this paper the influence of steam injection in Mashad Power Plant GE-F5 gas turbine parameters, applying VODOLEY system, is being observed. Results show that in this turbine, the turbine inlet temperature (T3) decreases in a range of 5 percent to 11 percent depending on ambient temperature, so the operating parameters in a gas turbine cycle equipped with VODOLEY system in 40° C of ambient temperature is the same as simple gas turbine cycle in 10° C of ambient temperature. Results show that the thermal efficiency increases up to 10 percent, but Back-Work ratio increases in a range of 15 percent to 30 percent. Also results show that although VODOLEY system has water treatment cost but by using this system the running cost will reduce up to 27 percent.


Sign in / Sign up

Export Citation Format

Share Document