Self Excited Multi-Mode Vibrations of Aircraft Brakes With Nonlinear Negative Damping

Author(s):  
Raymond J. Black

Abstract This paper shows how vibratory modes of a brake/landing gear system can interact strongly when there is nonlinear negative damping being generated at the brake’s friction interface. The approach first considers the normal modes of the linearized system. The nonlinear frictional interface force is then added to the modal equations of motion. The energy added to each of the modes, per cycle of the lowest frequency mode, is then determined. From these functions an amplitude path map and limit cycle amplitudes are determined. Multiple limit cycles are found to exist for certain combinations of damping. Amplitude modulation of the higher-frequency mode at multiples of the lower frequency mode is explained. Time solutions of the motion are obtained and compared to computer simulation results. Results compare closely. The method yields a global view of the stability and modal interactions caused by nonlinear negative damping at the brake’s friction interface.

1998 ◽  
Vol 120 (3) ◽  
pp. 776-783 ◽  
Author(s):  
J. Melanson ◽  
J. W. Zu

Vibration analysis of an internally damped rotating shaft, modeled using Timoshenko beam theory, with general boundary conditions is performed analytically. The equations of motion including the effects of internal viscous and hysteretic damping are derived. Exact solutions for the complex natural frequencies and complex normal modes are provided for each of the six classical boundary conditions. Numerical simulations show the effect of the internal damping on the stability of the rotor system.


Author(s):  
Diala Bitar ◽  
Najib Kacem ◽  
Noureddine Bouhaddi

The collective dynamics of an array of periodic two dimensional (2D) coupled pendulums under harmonic horizontal base excitation is investigated. The coupled differential equations governing the nonlinear vibrations of the considered system have been solved using an analytical-numerical solving procedure, based on the multiple scales method coupled with standing wave decomposition. It allows the identification of complex and wide variety of nonlinear phenomenon exhibited by the periodic nonlinear structure. The frequency responses for several coupled pendulums were calculated in order to analyze the stability, the modal interactions and the bifurcation topologies resulting from the collective dynamics of the coupled pendulums, while highlighting the large number of multimodal solutions for a small number of coupled pendulums. The complexity and the multivaludness of the responses were illustrated by a study of basins of attraction which display the large distribution of the multi-mode branches.


2011 ◽  
Vol 21 (06) ◽  
pp. 1539-1582 ◽  
Author(s):  
TASSOS BOUNTIS ◽  
GEORGE CHECHIN ◽  
VLADIMIR SAKHNENKO

In the present tutorial we address a problem with a long history, which remains of great interest to date due to its many important applications: It concerns the existence and stability of periodic and quasiperiodic orbits in N-degree of freedom Hamiltonian systems and their connection with discrete symmetries. Of primary importance in our study is what we call nonlinear normal modes (NNMs), i.e. periodic solutions which represent continuations of the system's linear normal modes in the nonlinear regime. We examine questions concerning the existence of such solutions and discuss different methods for constructing them and studying their stability under fixed and periodic boundary conditions. In the periodic case, we find it particularly useful to approach the problem through the discrete symmetries of many models, employing group theoretical concepts to identify a special type of NNMs which we call one-dimensional "bushes". We then describe how to use linear combinations of s ≥ 2 such NNMs to construct s-dimensional bushes of quasiperiodic orbits, for a wide variety of Hamiltonian systems including particle chains, a square molecule and octahedral crystals in 1, 2 and 3 dimensions. Next, we exploit the symmetries of the linearized equations of motion about these bushes to demonstrate how they may be simplified to study the destabilization of these orbits, as a result of their interaction with NNMs not belonging to the same bush. Applying this theory to the famous Fermi Pasta Ulam (FPU) chain, we review a number of interesting results concerning the stability of NNMs and higher-dimensional bushes, which have appeared in the recent literature. We then turn to a newly developed approach to the analytical and numerical construction of quasiperiodic orbits, which does not depend on the symmetries or boundary conditions of our system. Using this approach, we demonstrate that the well-known "paradox" of FPU recurrences may in fact be explained in terms of the exponential localization of the energies Eq of NNM's being excited at the low part of the frequency spectrum, i.e. q = 1, 2, 3, …. These results indicate that it is the stability of these low-dimensional compact manifolds called q-tori, that is related to the persistence or FPU recurrences at low energies. Finally, we discuss a novel approach to the stability of orbits of conservative systems, expressed by a spectrum of indices called GALI k, k = 2, …, 2N, by means of which one can determine accurately and efficiently the destabilization of q-tori, leading, after very long times, to the breakdown of recurrences and, ultimately, to the equipartition of energy, at high enough values of the total energy E.


Author(s):  
Melvin E. King ◽  
Alexander F. Vakakis

Abstract In this work, modifications to existing energy-based nonlinear normal mode (NNM) methodologies are developed in order to investigate internal resonances. A formulation for computing resonant NNMs is developed for discrete, or discretized for continuous systems, sets of weakly nonlinear equations with uncoupled linear terms (i.e systems in modal, or canonical, form). By considering a canonical framework, internal resonance conditions are immediately recognized by identifying commensurable linearized natural frequencies. Additionally, the canonical formulation allows for a single (linearized modal) coordinate to parameterize all other (modal) coordinates during a resonant modal response. Energy-based NNM methodologies are then applied to the canonical equations and asymptotic solutions are sought. In order to account for the resonant modal interactions, it will be shown that high-order terms in the O(1) solutions must be considered. Two applications (‘3:1’ resonances in a two-degree-of-freedom system and ‘3:1’ resonance in a hinged-clamped beam) are then considered by which to demonstrate the application of the resonant NNM methodology. Resonant normal mode solutions are obtained and the stability characteristics of these computed modes are considered. It is shown that for some responses, nonlinear modal relations do not exist in the context of physical coordinates and thus the transformation to canonical coordinates is necessary in order to define appropriate NNM relations.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1933
Author(s):  
Xinran Guo ◽  
Yuanchu Cheng ◽  
Jiada Wei ◽  
Yitian Luo

The dynamic characteristics of hydropower unit governing systems considerably influence the stability of hydropower units and the connected power system. The dynamic performances of hydropower units with power regulation mode (PRM) and opening regulation mode (ORM) are different. This paper establishes a detailed linear model of a hydropower unit based on the Phillips–Heffron model. The damping characteristic and stability of two regulation modes with different water inertia time constants TW were analyzed. ORM tended to provide negative damping, while PRM often provided positive damping in the major parts of the frequency range within the normal frequency oscillations when TW was large. Eigenvalue analysis illustrated that PRM has better stability than ORM. To validate the analysis, a simulation under two typical faults WAS conducted based on a nonlinear model of a hydropower unit. The simulation results illustrated that the responses of units with PRM are more stable in terms of important operating parameters, such as output power, rotor speed, and power angles. For hydropower units facing challenges in stable operation, PRM is recommended to obtain good dynamic stability.


2021 ◽  
Vol 11 (4) ◽  
pp. 1618
Author(s):  
Ping-Nan Chen ◽  
Yung-Te Chen ◽  
Hsin Hsiu ◽  
Ruei-Jia Chen

This paper proposes a passivity theorem on the basis of energy concepts to study the stability of force feedback in a virtual haptic system. An impedance-passivity controller (IPC) was designed from the two-port network perspective to improve the chief drawback of haptic systems, namely the considerable time required to reach stability if the equipment consumes energy slowly. The proposed IPC can be used to achieve stability through model parameter selection and to obtain control gain. In particular, haptic performance can be improved for extreme cases of high stiffness and negative damping. Furthermore, a virtual training system for one-degree-of-freedom sticking was developed to validate the experimental platform of our IPC. To ensure consistency in the experiment, we designed a specialized mechanical robot to replace human operation. Finally, compared with basic passivity control systems, our IPC could achieve stable control rapidly.


1961 ◽  
Vol 28 (3) ◽  
pp. 330-334 ◽  
Author(s):  
Eugene Sevin

The free motion of an undamped pendulum-type vibration absorber is studied on the basis of approximate nonlinear equations of motion. It is shown that this type of mechanical system exhibits the phenomenon of auto parametric excitation; a type of “instability” which cannot be accounted for on the basis of the linearized system. Complete energy transfer between modes is shown to occur when the beam frequency is twice the simple pendulum frequency. On the basis of a numerical solution, approximately 150 cycles of the beam oscillation take place during a single cycle of energy interchange.


Author(s):  
Ramin M. H. Khorasany ◽  
Stanley G. Hutton

In this paper, the effect of geometrical nonlinear terms, caused by a space fixed point force, on the frequencies of oscillations of a rotating disk with clamped-free boundary conditions is investigated. The nonlinear geometrical equations of motion are based on Von Karman plate theory. Using the eigenfunctions of a stationary disk as approximating functions in Galerkin’s method, the equations of motion are transformed into a set of coupled nonlinear Ordinary Differential Equations (ODEs). These equations are then used to find the equilibrium positions of the disk at different discrete blade speeds. At any given speed, the governing equations are linearized about the equilibrium solution of the disk under the application of a space fixed external force. These linearized equations are then used to find the oscillation frequencies of the disk considering the effect of large deformation. Using multi mode approximation and different levels of nonlinearity, the frequency response of the disk considering the effect of geometrical nonlinear terms are studied. It is found that at the linear critical speed, the nonlinear frequency of the corresponding mode is not zero. Results are presented that illustrate the effect of the magnitude of disk displacement upon the frequency response characteristics. It is also found that for each mode, including the effect of the geometrical nonlinear terms due to the applied load causes a separation in the frequency responses of its backward and forward traveling waves when the disk is stationary. This effect is similar to the effect of a space fixed constraint in the linear problem. In order to verify the numerical results, experiments are conducted and the results are presented.


1980 ◽  
Vol 47 (3) ◽  
pp. 645-651 ◽  
Author(s):  
L. A. Month ◽  
R. H. Rand

The stability of periodic motions (nonlinear normal modes) in a nonlinear two-degree-of-freedom Hamiltonian system is studied by deriving an approximation for the Poincare´ map via the Birkhoff-Gustavson canonical transofrmation. This method is presented as an alternative to the usual linearized stability analysis based on Floquet theory. An example is given for which the Floquet theory approach fails to predict stability but for which the Poincare´ map approach succeeds.


Author(s):  
L. T. Wang

Abstract A new method of formulating the generalized equations of motion for simple-closed (single loop) spatial linkages is presented in this paper. This method is based on the generalized principle of D’Alembert and the use of the transformation Jacobian matrices. The number of the differential equations of motion is minimized by performing the method of generalized coordinate partitioning in the joint space. Based on this formulation, a computational algorithm for computer simulation the dynamic motions of the linkage is developed, this algorithm is not only numerically stable but also fully exploits the efficient recursive computational schemes developed earlier for open kinematic chains. Two numerical examples are presented to demonstrate the stability and efficiency of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document