Interval Analysis-Based Flutter Analysis of Airplane Wings

Author(s):  
Singiresu S. Rao ◽  
Luna Majumder

Modern aircrafts require improved performance and maneuverability while they conduct the missions. The flutter, an aeroelastic phenomenon is one of the important situations that limit the aircraft speed. Furthermore, for aircraft operated at high speed, many uncertainties may exist in its structural and aerodynamics characteristics. Especially, a slight change in the wing structural mode may induce a variation in its aerodynamic force distribution. In this work, an interval-based approach is used to handle the uncertainties associated with the flutter analysis. The set-theoretic representation of uncertainty is motivated by a possible lack of detailed probabilistic information on the distributions of the parameters. The analysis procedure is performed on an aircraft wing structure using finite element idealization and the results have shown the effectiveness and feasibility of the interval method. The order of the aerodynamic, mass and stiffness matrices of the assembled structures is reduced by introducing the first few natural modes of the structure as generalized coordinates. System equivalent reduction expansion process is used for model reduction which uses the generalized inverse and carries information pertaining to the selected modes at the selected set of degrees of freedoms. The system equivalent reduction formulation allows the reduction process to preserve the dynamics of the full system in a reduced set of matrices. Thus the order of the eigenvalue problem in the flutter analysis is reduced to one-third of the corresponding statics problem.

2013 ◽  
Vol 438-439 ◽  
pp. 894-900
Author(s):  
Ke Jian Ouyang ◽  
Yi Long ◽  
Bi Cao Peng

With the length of stay cables close to 580m, only inclusion in aerodynamic forces of main deck cannot reflect the actual situation during wind-resistant design. The aerodynamic forces of stay cables should be considered in the three-dimensional flutter analysis of cable-stayed bridges. In this paper, mathematic expressions of unsteady aerodynamic force of stay cable were then derived in terms of aerodynamic damping and stiffness matrices. The above procedure is implemented into NACS by an independent module. As an example, the multimode flutter analysis of Sutong Bridge was conducted by using NACS. Fair agreement is achieved between the present numerical simulation and wind tunnel test results.


Author(s):  
Petr Šidlof ◽  
Václav Vlček ◽  
Martin Štěpán ◽  
Jaromír Horáček ◽  
Martin Luxa ◽  
...  

The paper reports on interferometric measurements of flow over a NACA0015 airfoil model during flutter limit cycle oscillations. The airfoil model is fixed on an elastic support allowing motion with two degrees of freedom — pitch and plunge. The structural mass and stiffness matrices can be tuned to certain extent, so that the eigenfrequencies of the two modes approach as needed. The model is equipped with dynamic pressure probes and sensors measuring the airfoil vertical position. The flow field around the airfoil was measured by Mach-Zehnder interferometer and registered using a high-speed camera synchronously with the mechanical vibration and pressure measurements. The Mach number of the incident airflow was gradually increased and the response of the aeroelastic system to initial impulse measured, until the flutter instability onset occurred. Flutter boundaries were evaluated for various additional masses attached (i.e., for various plunging mode eigenfrequencies), and post-critical behavior of the system investigated. The interferograms recorded by the high-speed camera were postprocessed, yielding pressure distribution around the airfoil during its vibration and an estimate of the total aerodynamic force and energy transfer from the airflow to the structure.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Burhan Khurshid ◽  
Roohie Naaz Mir

Generalized parallel counters (GPCs) are used in constructing high speed compressor trees. Prior work has focused on utilizing the fast carry chain and mapping the logic onto Look-Up Tables (LUTs). This mapping is not optimal in the sense that the LUT fabric is not fully utilized. This results in low efficiency GPCs. In this work, we present a heuristic that efficiently maps the GPC logic onto the LUT fabric. We have used our heuristic on various GPCs and have achieved an improvement in efficiency ranging from 33% to 100% in most of the cases. Experimental results using Xilinx 5th-, 6th-, and 7th-generation FPGAs and Stratix IV and V devices from Altera show a considerable reduction in resources utilization and dynamic power dissipation, for almost the same critical path delay. We have also implemented GPC-based FIR filters on 7th-generation Xilinx FPGAs using our proposed heuristic and compared their performance against conventional implementations. Implementations based on our heuristic show improved performance. Comparisons are also made against filters based on integrated DSP blocks and inherent IP cores from Xilinx. The results show that the proposed heuristic provides performance that is comparable to the structures based on these specialized resources.


Author(s):  
Yi Zhang ◽  
Ka Chung Chan ◽  
Sau Chung Fu ◽  
Christopher Yu Hang Chao

Abstract Flutter-driven triboelectric nanogenerator (FTENG) is one of the most promising methods to harvest small-scale wind energy. Wind causes self-fluttering motion of a flag in the FTENG to generate electricity by contact electrification. A lot of studies have been conducted to enhance the energy output by increasing the surface charge density of the flag, but only a few researches tried to increase the converting efficiency by enlarging the flapping motion. In this study, we show that by simply replacing the rigid flagpole in the FTENG with a flexible flagpole, the energy conversion efficiency is augmented and the energy output is enhanced. It is found that when the flag flutters, the flagpole also undergoes aerodynamic force. The lift force generated from the fluttering flag applies a periodic rotational moment on the flagpole, and causes the flagpole to vibrate. The vibration of the flagpole, in turn amplifies the flutter of the flag. Both the fluttering dynamics of the flags with rigid and flexible flagpoles have been recorded by a high-speed camera. When the flag was held by a flexible flagpole, the fluttering amplitude and the contact area between the flag and electrode plates were increased. The energy enhancement increased as the flow velocity increased and the enhancement can be 113 times when the wind velocity is 10 m/s. The thickness of the flagpole was investigated. An optimal output of open-circuit voltage reaching 1128 V (peak-to-peak value) or 312.40 V (RMS value), and short-circuit current reaching 127.67 μA (peak-to-peak value) or 31.99 μA (RMS value) at 12.21 m/s flow velocity was achieved. This research presents a simple design to enhance the output performance of an FTENG by amplifying the fluttering amplitude. Based on the performance obtained in this study, the improved FTENG has the potential to apply in a smart city for driving electronic devices as a power source for IoT applications.


2021 ◽  
Author(s):  
KANAT ANURAKPARADORN ◽  
ALAN TAUB ◽  
ERIC MICHIELSSEN

The proliferation of wireless technology calls for the development of cost-effective Electromagnetic Interference (EMI) shielding materials that reduce the susceptibility of high-speed electronic circuits to undesired incoming radiation. Ideally, such materials offer protection over wide frequency ranges and are insensitive to the polarization or angle of incidence of the impinging fields. Here, next-generation EMI shielding materials composed of polymer composites with conductive and magnetic fillers are introduced. It is shown that careful control of the concentration and dispersion of the polymers’ conductive and magnetic constituents permits tuning of the composites’ intrinsic electrical and magnetic properties. The resulting EMI shields are lightweight, cheap and offer greater protection than traditional metal gaskets and foams. In this work, cobalt ferrite magnetic nanoparticles (CoFe2O4) decorated on graphene-based material were dispersed in polylactic acid (PLA) matrix for high EM absorption level in X-band (8-12 GHz). The decoration of the magnetic particles was performed on the as-prepared conductive graphene nanoplatelets (GNP) and reduced graphene oxide (rGO). GNP composites exhibited higher DC conductivity, and permittivity than rGO composites. This is attributed to issues associated with the reduction process, including a lack of conductivity due to the insulated oxygen functional groups and the reduction in the lateral size. Compared with rGOs, the lack of out-plane functional groups causes the cobalt ferrite nanoparticles to agglomerate and not cover the entire surface of the GNPs. These morphological differences improve the magnetization and EM absorption of the composite system. The compatibilizer (pyrene-PLA-OH) was added to the composites to enhance dispersion of the GNPs in the polymer matrix which benefits in higher absorption of the shield. The influence of the compatibilizer on parameter, the reflection loss (RL) of the composite were determined from the characterized intrinsic properties


Author(s):  
Dilong Guo ◽  
Wen Liu ◽  
Junhao Song ◽  
Ye Zhang ◽  
Guowei Yang

The aerodynamic force acting on the pantograph by the airflow is obviously unsteady and has a certain vibration frequency and amplitude, while the high-speed train passes through the tunnel. In addition to the unsteady behavior in the open-air operation, the compressive and expansion waves in the tunnel will be generated due to the influence of the blocking ratio. The propagation of the compression and expansion waves in the tunnel will affect the pantograph pressure distribution and cause the pantograph stress state to change significantly, which affects the current characteristics of the pantograph. In this paper, the aerodynamic force of the pantograph is studied with the method of the IDDES combined with overset grid technique when high speed train passes through the tunnel. The results show that the aerodynamic force of the pantograph is subjected to violent oscillations when the pantograph passes through the tunnel, especially at the entrance of the tunnel, the exit of the tunnel and the expansion wave passing through the pantograph. The changes of the pantograph aerodynamic force can reach a maximum amplitude of 106%. When high-speed trains pass through tunnels at different speeds, the aerodynamic coefficients of the pantographs are roughly the same.


2021 ◽  
pp. 95-102
Author(s):  
K. I Barinova ◽  
A. V Dolgopolov ◽  
O. A Orlova ◽  
M. A Pronin

Flutter numerical analysis of a dynamically scaled model (DSM) of a high aspect ratio wing was performed using experimentally obtained generalized parameters of eigen modes of vibrations. The DSM is made of polymer composite materials and is designed for aeroelastic studies in a high-speed wind tunnel. As a result of the analysis, safe operation conditions (flutter limits) of the DSM were determined. The input data to develop the flutter mathematical model are DSM modal test results, i.e. eigen frequencies, mode shapes, modal damping coefficients, and generalized masses obtained from the experiment. The known methods to determine generalized masses have experimental errors. In this work some of the most practical methods to get generalized masses are used: mechanical loading, quadrature component addition and the complex power method. Errors of the above methods were analyzed, and the most reliable methods were selected for flutter analysis. Comparison was made between the flutter analysis using generalized parameters and a pure theoretical one based on developing the mathematical model from the DSM design specifications. According to the design specifications, the mathematical model utilizes the beam-like schematization of the wing. The analysis was performed for Mach numbers from 0.2 to 0.8 and relative air densities of 0.5, 1, 1.5. Comparison of the two methods showed the difference in critical flutter dynamic pressure no more than 6%, which indicates good prospects of the flutter analysis based on generalized parameters of eigen modes.


2011 ◽  
Vol 9 (71) ◽  
pp. 1194-1207 ◽  
Author(s):  
Simon M. Walker ◽  
Adrian L. R. Thomas ◽  
Graham K. Taylor

The alula is a hinged flap found at the base of the wings of most brachyceran Diptera. The alula accounts for up to 10 per cent of the total wing area in hoverflies (Syrphidae), and its hinged arrangement allows the wings to be swept back over the thorax and abdomen at rest. The alula is actuated via the third axillary sclerite, which is a component of the wing hinge that is involved in wing retraction and control. The third axillary sclerite has also been implicated in the gear change mechanism of flies. This mechanism allows rapid switching between different modes of wing kinematics, by imposing or removing contact with a mechanical stop limiting movement of the wing during the lower half of the downstroke. The alula operates in two distinct states during flight—flipped or flat—and we hypothesize that its state indicates switching between different flight modes. We used high-speed digital video of free-flying hoverflies ( Eristalis tenax and Eristalis pertinax ) to investigate whether flipping of the alula was associated with changes in wing and body kinematics. We found that alula state was associated with different distributions of multiple wing kinematic parameters, including stroke amplitude, stroke deviation angle, downstroke angle of incidence and timing of supination. Changes in all of these parameters have previously been linked to gear change in flies. Symmetric flipping of the alulae was associated with changes in the symmetric linear acceleration of the body, while asymmetric flipping of the alulae was associated with asymmetric angular acceleration of the body. We conclude that the wings produce less aerodynamic force when the alula is flipped, largely as a result of the accompanying changes in wing kinematics. The alula changes state at mid-downstroke, which is the point at which the gear change mechanism is known to come into effect. This transition is accompanied by changes in the other wing kinematic parameters. We therefore find that the state of the alula is linked to the same parameters as are affected by the gear change mechanism. We conclude that the state of the alula does indeed indicate the operation of different flight modes in Eristalis , and infer that a likely mechanism for these changes in flight mode is the gear change mechanism.


Sign in / Sign up

Export Citation Format

Share Document