Modal Analysis of Magnetic Resonance Imaging (MRI) Scanner Support Structure

Author(s):  
Geneviève Rodrigue ◽  
Chris K. Mechefske

Experimental and computational modal analysis has been completed as part of a larger project with the ultimate goal of understanding MRI vibration and implementing passive vibration isolation in the MRI machine support structure. The specific purpose of the modal analysis is to extract natural frequencies (eigenvalues) and mode shapes (eigenvectors) of the MRI support structure in order to validate the computational model of the base against the experimental results so that the former may be used as an analysis and design tool. From the model, the resonance points of the MRI support structure are determined within the expected frequency ranges of excitation.

1985 ◽  
Vol 107 (2) ◽  
pp. 271-276 ◽  
Author(s):  
C. E. Spiekermann ◽  
C. J. Radcliffe ◽  
E. D. Goodman

Vibration isolation of a rigid body on compliant mounts has many engineering applications. An analysis for solving these problems using a rigid body simulation and a penalty function optimization is discussed. The simulation is used to calculate natural frequencies and mode shapes, which are a function of the mount design parameters. Laboratory testing results are presented which verify the accuracy of the simulation. The optimization procedure penalizes natural frequencies in an undesirable frequency range and also large design changes. This penalty function is minimized by changing the mount design paramters consisting of the location, stiffness, and/or orientation. The result is a set of design parameters defining a vibration isolation system with natural frequencies moved away from the center of the undesirable frequency range. An interactive computer program was written which allows the engineer to use this technique as a design tool.


2021 ◽  
pp. 0309524X2110116
Author(s):  
Oumnia Lagdani ◽  
Mostapha Tarfaoui ◽  
Mourad Nachtane ◽  
Mourad Trihi ◽  
Houda Laaouidi

In the far north, low temperatures and atmospheric icing are a major danger for the safe operation of wind turbines. It can cause several problems in fatigue loads, the balance of the rotor and aerodynamics. With the aim of improving the rigidity of the wind turbine blade, composite materials are currently being used. A numerical work aims to evaluate the effect of ice on composite blades and to determine the most adequate material under icing conditions. Different ice thicknesses are considered in the lower part of the blade. In this paper, modal analysis is performed to obtain the natural frequencies and corresponding mode shapes of the structure. This analysis is elaborated using the finite element method (FEM) computer program through ABAQUS software. The results have laid that the natural frequencies of the blade varied according to the material and thickness of ice and that there is no resonance phenomenon.


2011 ◽  
Vol 2-3 ◽  
pp. 1018-1020
Author(s):  
De Chen Zhang ◽  
Yan Ping Sun

Finite element method and structural mechanics method are used to study the blast furnace shell modal analysis and the natural frequencies and mode shapes have been calculated. The two methods were compared and validated , and the results provide a theoretical foundation for the anti-vibration capabilities design of blast furnace shell in the future .


2018 ◽  
Vol 217 ◽  
pp. 02001
Author(s):  
Mohd Hafiz Abdul Satar ◽  
Ahmad Zhafran Ahmad Mazlan

Hysteresis is one of the non-linearity characteristics of the piezoelectric material. This characteristic is important to be characterized since it can affect the performance of the piezoelectric material as sensor or actuator in many applications. In this study, the model of the coupled aluminium beam with single piezoelectric patch material is constructed to investigate the hysteresis effect of the piezoelectric material to the whole beam structure. A P-876 DuraActTM type piezoelectric patch material is used in modelling of the piezoelectric actuator. Firstly, the modal analysis of the coupled beam-piezoelectric actuator is determined to get the natural frequencies and mode shapes. Then, the piezoelectric patch material is investigated in terms of actuator by given a sinusoidal voltage excitation and output in terms of deflection, stress and strain of the piezoelectric actuator are investigated. From the results, it is clear that, the coupled beam-piezoelectric material is affected by the hysteresis of the piezoelectric material and the natural frequencies of the beam structure. This characteristic is important for the piezoelectric actuator manufacturer and by providing the correction algorithm, it can improve the performance of the piezoelectric actuator for many applications.


2018 ◽  
Vol 7 (4.38) ◽  
pp. 1395 ◽  
Author(s):  
Kadhim H. Suffer ◽  
Yassr Y. Kahtan ◽  
Zuradzman M. Razlan

The present global energy economy suggests the use of renewable sources such as solar, wind, and biomass to produce the required power. The vertical axis wind turbine is one of wind power applications. Usually, when the vertical axis wind turbine blades are designed from the airfoil, the starting torque problem begins. The main objective of this research is to numerically simulate the combination of movable vanes of a flat plate with the airfoil in a single blade configuration to solve the starting torque problem. CFD analysis in ANSYS-FLUENT and structural analysis in ANSYS of combined blade vertical axis wind turbine rotor has been undertaken. The first simulation is carried out to investigations the aerodynamic characteristic of the turbine by using the finite volume method. While the second simulation is carried out with finite element method for the modal analysis to find the natural frequencies and the mode shape in order to avoid extreme vibration and turbine failure, the natural frequencies, and their corresponding mode shapes are studied and the results were presented with damping and without damping for four selected cases. The predicted results show that the static pressure drop across the blade increase in the active blade side because of the vanes are fully closed and decrease in the negative side because of the all the vanes are fully open. The combined blade helps to increase turbine rotation and so, thus, the power of the turbine increases. While the modal results show that until the 5th natural frequency the effect of damping can be neglected. The predicted results show agreement with those reported in the literature for VAWT with different blade designs.   


2010 ◽  
Vol 97-101 ◽  
pp. 3392-3396
Author(s):  
Li Gang Qu ◽  
Ke Qiang Pan ◽  
Xin Chen

The dynamic characteristic of flexible assembling fixture (FAF) for aircraft panel component is analysed by the method of finite element modal analysis. Consequently, the every order of natural frequencies and mode shapes of given different postures of the FAF are obtained. It structural weakness were pointed out through the analysis results of the modal vibration characteristics. The properties of mass and stiffness of the FAF's components are concurrently calculated, whose optimal matching and harmonizing with each other have great influence on the dynamic vibration characteristics of the FAF. As the results of these analysis, the design improving suggestion for the FAF is put forward.


Author(s):  
Lawrence Virgin ◽  
David Holland

It is relatively well known that axial loads tend to influence lateral stiffness and hence natural frequencies of slender structural components. Tensile forces tend to increase the lateral stiffness and compressive forces tend to reduce lateral stiffness, bringing with it the possibility of buckling. In many practical situations this is a negligible effect. But for very slender structures it can be important, including the effect of self-weight. This paper will focus attention on a form of double cantilever beam system, i.e., two cantilevers sharing a common hub. A differential axial load can be applied to this system via orientation in a gravitational field. We shall neglect the effect of gravity when the beams are in their horizontal orientation from a limited theoretical standpoint. It is of course present in the experiments but the cantilevers are much stiffer in one direction than the other, and the beams are clamped with their stiffer resistance in the vertical direction. The focus of the current paper is on the natural frequencies and mode shapes of a two-beam system from an experimental modal analysis perspective.


2011 ◽  
Vol 418-420 ◽  
pp. 1748-1751
Author(s):  
Wei Li ◽  
Ning Liu ◽  
Ning Li ◽  
Yan Jun Liu ◽  
Liang Ma

The 3D model of gear with asymmetric profile and double pressure angles is built by the autodesk inventor software. It is imported and analyzed by the ANSYS software. Then each order natural frequencies and mode shapes are obtained. So resonance and harmful mode shapes can be avoided, and dynamic performances of gear with asymmetric profile and double pressure angles is improved. This paper has a certain reference value for the dynamic design of other types of gears.


2014 ◽  
Vol 1016 ◽  
pp. 244-248
Author(s):  
Fei Liu ◽  
Wei Liang He

The stress distribution and modal characteristics of a space inflatable torus is investigated using the nonlinear finite element method. This paper focused on the effect of enclosed air on the modal analysis of the torus, including the effect of follower pressure load and the effect of the interaction between the enclosed air and the torus structure. Research shows that follower pressure stiffness significantly reduces the natural frequencies and changes mode shapes order. The fluid-structure interaction obviously reduces the natural frequencies, and the in-plane translation mode is observed. Follower pressure stiffness has no effect on the in-plane translation mode. Fluid-structure interaction decreases the natural frequencies of the modal considering the follower load effect, but it does not change mode shapes order. The effect of enclosed gas seriously reduces the natural frequencies, changes mode shapes order, and produces the in-plane translation mode.


2012 ◽  
Vol 189 ◽  
pp. 443-447
Author(s):  
Wei Qiang Zhao ◽  
Yong Xian Liu ◽  
Mo Wu Lu

This paper introduces a FEA method for vibration characteristics analysis of an aero-engine shrouded turbine blade and makes an actual modal analysis of this shrouded blade based on this method in UG software environment. The first six natural frequencies and mode shapes of this shrouded blade are calculated. And also, the dynamic characteristics of the shrouded turbine blade are discussed in detail according to the analysis results. The FEA method and the vibration characteristics analysis results in the paper can be used for optimal design and vibration safety verification of this aero-engine shrouded turbine blade.


Sign in / Sign up

Export Citation Format

Share Document