Design of a Rotatable One-Element Snake Bone for NOTES

Author(s):  
Aoyu Zhang ◽  
Bin Liu ◽  
John Liu ◽  
Tianyu Xie

Over the past decade, natural orifice transluminal endoscopic surgery (NOTES) has developed out of a merger of endoscopy and surgery [1]. NOTES offers the advantages of avoiding external incisions and scars, reducing pain, and shortening recovery time by using natural body orifices as the primary portal of entry for surgeries [2]. The NOTES platform consists of a flexible, hollow body — enabling travel in the interior of the human body — and the distal end (head), the mechanical structure of which is based off of the snake bone. After the distal end passes through a natural orifice, through a transluminal opening of the stomach, vagina, bladder, or colon, and reaches the target working place in the peritoneal cavity, several therapeutic and imaging tools can be passed through the hollow conduit of the NOTES’ body for surgeries [3]. The traditional snake bone design presents two major problems. First, the movement is constrained to two bending degrees-of-freedom (DOF). A need to reorient the tool then often requires the entire body to be rotated by the physician, an unwieldly manipulation that both hinders convenience and results in imprecise control. Second, the traditional fabrication process is tedious and therefore lends to higher manufacturing costs; the bending joints must be first individually machined then assembled together piece-by-piece using rotation pins. We propose a novel design for the snake bone that introduces an additional DOF via rotation and is simple and cost-effective to machine. The revised snake bone design features rotation segments controlled by wires that a physician can readily manipulate for increased control and convenience. Further, because surgical tools that pass through the NOTES body conduit are also installed on snake bone structures, the introduction of rotation to the snake bone design increases each tool’s mobility and manipulation. This advance therefore presents the potential to decrease both the number of required tools and the overall diameter of the NOTES body. Finally, the body is machined as a single element and therefore minimizes the work of assembly.

Author(s):  
Shokoofeh Abbaszadeh ◽  
Roberto Leidhold ◽  
Stefan Hoerner

AbstractFish mortality assessments for turbine passages are currently performed by live-animal testing with up to a hundred thousand fish per year in Germany. A propelled sensor device could act as a fish surrogate. In this context, the study presented here investigates the state of the art via a thorough literature review on propulsion systems for aquatic robots. An evaluation of propulsion performance, weight, size and complexity of the motion achievable allows for the selection of an optimal concept for such a fish mimicking device carrying the sensors. In the second step, the design of a bioinspired soft robotic fish driven by an unconventional drive system is described. It is based on piezoceramic actuators, which allow for motion with five degrees of freedom (DOF) and the creation of complex bio-mimicking body motions. A kinematic model for the motion’s characteristics is developed, to achieve accurate position feedback with the use of strain gauges. Optical measurements validate the complex deformation of the body and deliver the basis for the calibration of the kinematic model. Finally, it can be shown, that the calibrated model presented allows the tracking of the deformation of the entire body with an accuracy of 0.1 mm.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 306
Author(s):  
Igor Maiborodin ◽  
Aleksandr Shevela ◽  
Michael Toder ◽  
Sergey Marchukov ◽  
Natalya Tursunova ◽  
...  

When administered intravenously, extracellular vesicles derived from multipotent stromal cells (MSC EVs) immediately pass through the lungs along with the blood and regularly spread to all organs. When administered intraperitoneally, they are absorbed either into the blood or into the lymph and are quickly disseminated throughout the body. The possibility of generalized spread of MSC EVs to distant organs in case of local intratissular administration remains unexplored. However, it is impossible to exclude MSC EV influence on tissues distant from the injection site due to the active or passive migration of these injected nanoparticles through the vessels. The research is based on findings obtained when studying the samples of lungs, heart, spleen, and liver of outbred rabbits of both sexes weighing 3–4 kg at various times after the injection of EVs derived from MSCs of bone marrow origin and labeled by PKH26 into an artificially created defect of the proximal condyle of the tibia. MSC EVs were isolated by serial ultracentrifugation and characterized by transmission electron microscopy and flow cytometry. After the introduction of MSC EVs into the damaged proximal condyle of the tibia of rabbits, these MSC EVs can be found most frequently in the lungs, myocardium, liver, and spleen. MSC EVs enter all of these organs with the blood flow. The lungs contained the maximum number of labeled MSC EVs; moreover, they were often associated with detritus and were located in the lumen of the alveoli. In the capillary network of various organs except the myocardium, MSC EVs are adsorbed by paravasal phagocytes; in some cases, specifically labeled small dust-like objects can be detected throughout the entire experiment—up to ten days of observation. Therefore, we can conclude that the entire body, including distant organs, is effected both by antigenic detritus, which appeared in the bloodstream after extensive surgery, and MSC EVs introduced from the outside.


2004 ◽  
Vol 92 (3) ◽  
pp. 1783-1795 ◽  
Author(s):  
Elizabeth Garcia-Perez ◽  
Davide Zoccolan ◽  
Giulietta Pinato ◽  
Vincent Torre

Local bending, a motor response caused by mechanical stimulation of the leech skin, has been shown to be remarkably reproducible, in its initial phase, despite the highly variable firing of motoneurons sustaining it. In this work, the reproducibility of local bending was further analyzed by monitoring it over a longer period of time and by using more intact preparations, in which muscle activation in an entire body segment was studied. Our experiments showed that local bending is a moderately complex motor response, composed of a sequence of four different phases, which were consistently identified in all leeches. During each phase, longitudinal and circular muscles in specific areas of the body segment acted synergistically, being co-activated or co-inhibited depending on their position relative to the stimulation site. Onset and duration of the first phase were reproducible across different trials and different animals as a result of the massive co-activation of excitatory motoneurons sustaining it. The other phases were produced by the inhibition of excitatory and activation of inhibitory motoneurons, and also by the intrinsic relaxation dynamics of leech muscles. As a consequence, their duration and relative timing was variable across different preparations, whereas their order of appearance was conserved. These results suggest that, during local bending, the leech neuromuscular system 1) operates a reduction of its available degrees of freedom, by simultaneously recruiting groups of otherwise antagonistic muscles and large populations of motoneurons; and 2) ensures reliability and effectiveness of this escape reflex, by guaranteeing the reproducibility of its crucial initial phase.


2020 ◽  
Vol 43 ◽  
Author(s):  
David Spurrett

Abstract Comprehensive accounts of resource-rational attempts to maximise utility shouldn't ignore the demands of constructing utility representations. This can be onerous when, as in humans, there are many rewarding modalities. Another thing best not ignored is the processing demands of making functional activity out of the many degrees of freedom of a body. The target article is almost silent on both.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 716-722
Author(s):  
Sneha Dhakite ◽  
Sadhana Misar Wajpeyi

The “Coronavirus disease 19 (COVID-19)” is caused by “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)”, a newly discovered member of the Coronaviridae family of viruses which is a highly communicable. There is no effective medical treatment till date for Coronavirus disease hence prevention is the best way to keep disease away. Rasayana proved to be highly efficacious and cost effective for the Prevention and Control of viral infections when vaccines and standard therapies are lacking. Rasayana Chikitsa is one of the eight branches of Ashtanga Ayurveda which helps to maintain healthy life style. Rasayana improves immunity and performs many vital functions of human body. Vyadhikshamatva that is immune mechanism of the body is involved in Prevention of the occurrence of a new disease and it also decreases the virulence and progression of an existing disease. In COVID-19 the Respiratory system mainly get affected which is evident from its symptoms like cold, cough and breathlessness. Here the drugs help in enhancing immune system and strengthening functions of Respiratory system can be useful. For this purpose, the Rasayana like Chyavanprasha, Agastya Haritaki, Pippali Rasayana, Guduchi, Yashtimadhu, Haridra, Ashwagandha, Tulsi are used. Rasayana working on Respiratory system are best for Prevention of Coronavirus and boosting immune system. Rasayana Chikitsa can be effective in the Prevention as well as reducing symptoms of COVID-19.


Author(s):  
Sreeharsha N. ◽  
Bargale Sushant Sukumar ◽  
Divyasree C. H.

Diabetes mellitus is a chronic metabolic disorder in which the body is unable to make proper utilisation of glucose, resulting in the condition of hyperglycaemia. Excess glucose in the blood ultimately results in high levels of glucose being present in the urine (glycosuria). This increase the urine output, which leads to dehydration and increase thirst. India has the largest diabetic population in the world. Changes in eating habits, increasing weight and decreased physical activity are major factors leading to increased incidence of Diabetes. Lifestyle plays an important role in the development of Diabetes. Yoga offers natural and effective remedies without toxic side-effects, and with benefits that extend far beyond the physical. This system of Yoga is a simple, natural programme involving five main principles: proper exercise, proper breathing, proper relaxation, proper diet and positive thinking and meditation. It is a cost effective lifestyle intervention technique.


2014 ◽  
Vol 112 (1) ◽  
pp. E49-E55 ◽  
Author(s):  
Te Du ◽  
Zhiyuan Han ◽  
Guoying Zhou ◽  
Bernard Roizman

The key events in herpes simplex virus (HSV) infections are (i) replication at a portal of entry into the body modeled by infection of cultured cells; (ii) establishment of a latent state characterized by a sole latency-associated transcript and microRNAs (miRNAs) modeled in murine peripheral ganglia 30 d after inoculation; and (iii) reactivation from the latent state modeled by excision and incubation of ganglia in medium containing anti-NGF antibody for a timespan of a single viral replicative cycle. In this report, we examine the pattern of synthesis and accumulation of 18 HSV-1 miRNAs in the three models. We report the following: (i) H2-3P, H3-3P, H4-3P, H5-3P, H6-3P, and H7-5P accumulated in ganglia harboring latent virus. All but H4-3P were readily detected in productively infected cells, and most likely they originate from three transcriptional units. (ii) H8-5P, H15, H17, H18, H26, and H27 accumulated during reactivation. Of this group, only H26 and H27 could be detected in productively infected cells. (iii) Of the 18 we have examined, only 10 miRNAs were found to accumulate above background levels in productively infected cells. The disparity in the accumulation of miRNAs in cell culture and during reactivation may reflect differences in the patterns of regulation of viral gene expression during productive infection and during reactivation from the latent state.


1998 ◽  
Vol 72 (3) ◽  
pp. 215-219 ◽  
Author(s):  
Ho-Choon Woo ◽  
Myung-Deuk Seo ◽  
Sung-Jong Hong

AbstractCentrocestus armatus (Trematoda: Heterophyidae) develops rapidly and produces eggs at 3 days postinfection in albino rats. Excysted metacercariae are pear-shaped and concave ventrally, with 42–44 peg-like circumoral spines. The entire body surface is densely covered with scale-like serrated spines. On juveniles, serration of the tegumental spines is greatest in the middle of the ventral and dorsal surfaces, and decreases anteriorly and posteriorly. Ciliated sensory papillae are concentrated around the oral sucker. Several nonciliated sensory papillae (type II papillae) occur equidistantly on the acetabulum and are arranged in a linear symmetry on the dorsal surface. On adults, the serration of the tegumental spines decreases to 14–17 tips on the ventrolateral surface. The high density of tegumental spines on posterior half of the body and the distribution of type II papillae on dorsal surface are considered to be characteristic of C. armatus.


2003 ◽  
Vol 9 (7) ◽  
pp. 791-804 ◽  
Author(s):  
John Dzielski ◽  
Andrew Kurdila

At very high speeds, underwater bodies develop cavitation bubbles at the trailing edges of sharp corners or from contours where adverse pressure gradients are sufficient to induce flow separation. Coupled with a properly designed cavitator at the nose of a vehicle, this natural cavitation can be augmented with gas to induce a cavity to cover nearly the entire body of the vehicle. The formation of the cavity results in a significant reduction in drag on the vehicle and these so-called high-speed supercavitating vehicles (HSSVs) naturally operate at speeds in excess of 75 m s-1. The first part of this paper presents a derivation of a benchmark problem for control of HSSVs. The benchmark problem focuses exclusively on the pitch-plane dynamics of the body which currently appear to present the most severe challenges. A vehicle model is parametrized in terms of generic parameters of body radius, body length, and body density relative to the surrounding fluid. The forebody shape is assumed to be a right cylindrical cone and the aft two-thirds is assumed to be cylindrical. This effectively parametrizes the inertia characteristics of the body. Assuming the cavitator is a flat plate, control surface lift curves are specified relative to the cavitator effectiveness. A force model for a planing afterbody is also presented. The resulting model is generally unstable whenever in contact with the cavity and stable otherwise, provided the fin effectiveness is large enough. If it is assumed that a cavity separation sensor is not available or that the entire weight of the body is not to be carried on control surfaces, limit cycle oscillations generally result. The weight of the body inevitably forces the vehicle into contact with the cavity and the unstable mode; the body effectively skips on the cavity wall. The general motion can be characterized by switching between two nominally linear models and an external constant forcing function. Because of the extremely short duration of the cavity contact, direct suppression of the oscillations and stable planing appear to present severe challenges to the actuator designer. These challenges are investigated in the second half of the paper, along with several approaches to the design of active control systems.


2017 ◽  
Vol 92 (1) ◽  
pp. 109-115 ◽  
Author(s):  
P.H.O. Cavalcante ◽  
F. Moravec ◽  
C.P. Santos

AbstractA new nematode species,Philometroides acreanensisn. sp. (Philometridae), is described from female specimens recovered from the stomach wall of the freshwater catfishPimelodus blochiiValenciennes (Pimelodidae) collected in the Acre River (Amazon River basin), Acre State, Brazil. Based on examination by light and scanning electron microscopy, the new species differs from the two other South American congeneric species mainly in the body length of the gravid female (240–280 mm), the length of the oesophagus (1.25 mm in holotype) representing 0.5% of the entire body length, the range of cuticular embossment, as well as the location in the host (stomach), order of the fish host (Siluriformes) and the geographical distribution (Amazon River drainage system). This is the third known species ofPhilometroidesYamaguti, 1935 reported from South America. A key to species ofPhilometroidesoccurring in the fish of America is provided.


Sign in / Sign up

Export Citation Format

Share Document