Modeling and Analysis of the Hydraulic System for Oil Budget in an Automotive Transmission

Author(s):  
Hsu-Chiang Miao ◽  
Zongxuan Sun ◽  
Jonathan Fair ◽  
Joshua Lehrmann ◽  
Samuel Harbin

Many automotive transmissions, including automatic and hybrid transmissions, employ electro-hydraulics for gear shift, system cooling, and lubrication. Transmission oil budget refers to the process of dynamically distributing pressurized fluid from the pump into the sub-systems of the transmission. The oil budget will ultimately determine the transmission pump size and directly impact vehicle fuel economy. It will further affect the dynamic performance of the transmission. Due to large number of components, complex hydraulic circuits, and dynamic operating conditions, estimating transmission oil budget is extremely complex. To obtain a precise oil budget, we need to not only model each hydraulic component accurately, but also analyze the flow requirement in a dynamic fashion. This paper presents the modeling of the transmission hydraulic system and its application for oil budget analysis.

Author(s):  
Tahany W. Sadak ◽  
Ahmed Fouly

Hydraulic systems are characterized by their ability to import large forces at high speeds and are used in many industrial motion systems, also, in applications where good dynamic performance is important. This research concentrates on static and dynamic performance of a linear hydraulic system under different operating conditions in case of connecting an Electro Hydraulic Servo Valve (EHSV) and a Proportional Directional Flow Control Valve (PDFCV). High technology is used for measuring and recording the experimental results which achieves accurate evaluations. Experiments have been conducted in case of no-load and under load 5560 N. Supply pressure has been changed from 10 up to 50 bar. Effect of pressure and load variation on hydraulic system performance has been studied. It is concluded that increasing the load decreases the bandwidth frequency, but increasing the supply pressure increases the bandwidth frequency. Comparing the time lag of the system considering connecting the (EHSV) with that in case of connecting (PDFCV), it’s observed that in the present investigation the time lag improves by about 86.4% in case of free-load and by about 95.3% in case of system loaded.


2020 ◽  
Vol 13 (2) ◽  
pp. 126-140
Author(s):  
Jing Gan ◽  
Xiaobin Fan ◽  
Zeng Song ◽  
Mingyue Zhang ◽  
Bin Zhao

Background: The power performance of an electric vehicle is the basic parameter. Traditional test equipment, such as the expensive chassis dynamometer, not only increases the cost of testing but also makes it impossible to measure all the performance parameters of an electric vehicle. Objective: A set of convenient, efficient and sensitive power measurement system for electric vehicles is developed to obtain the real-time power changes of hub-motor vehicles under various operating conditions, and the dynamic performance parameters of hub-motor vehicles are obtained through the system. Methods: Firstly, a set of on-board power test system is developed by using virtual instrument (Lab- VIEW). This test system can obtain the power changes of hub-motor vehicles under various operating conditions in real-time and save data in real-time. Then, the driving resistance of hub-motor vehicles is analyzed, and the power performance of hub-motor vehicles is studied in depth. The power testing system is proposed to test the input power of both ends of the driving motor, and the chassis dynamometer is combined to test so that the output efficiency of the driving motor can be easily obtained without disassembly. Finally, this method is used to carry out the road test and obtain the vehicle dynamic performance parameters. Results: The real-time current, voltage and power, maximum power, acceleration time and maximum speed of the vehicle can be obtained accurately by using the power test system in the real road experiment. Conclusion: The maximum power required by the two motors reaches about 9KW, and it takes about 20 seconds to reach the maximum speed. The total power required to maintain the maximum speed is about 7.8kw, and the maximum speed is 62km/h. In this article, various patents have been discussed.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 536
Author(s):  
Kenneth A. Goldberg ◽  
Antoine Wojdyla ◽  
Diane Bryant

New, high-coherent-flux X-ray beamlines at synchrotron and free-electron laser light sources rely on wavefront sensors to achieve and maintain optimal alignment under dynamic operating conditions. This includes feedback to adaptive X-ray optics. We describe the design and modeling of a new class of binary-amplitude reflective gratings for shearing interferometry and Hartmann wavefront sensing. Compact arrays of deeply etched gratings illuminated at glancing incidence can withstand higher power densities than transmission membranes and can be designed to operate across a broad range of photon energies with a fixed grating-to-detector distance. Coherent wave-propagation is used to study the energy bandwidth of individual elements in an array and to set the design parameters. We observe that shearing operates well over a ±10% bandwidth, while Hartmann can be extended to ±30% or more, in our configuration. We apply this methodology to the design of a wavefront sensor for a soft X-ray beamline operating from 230 eV to 1400 eV and model shearing and Hartmann tests in the presence of varying wavefront aberration types and magnitudes.


Author(s):  
Christoph Heinz ◽  
Markus Schatz ◽  
Michael V. Casey ◽  
Heinrich Stu¨er

To guarantee a faultless operation of a turbine it is necessary to know the dynamic performance of the machine especially during start-up and shut-down. In this paper the vibration behaviour of a low pressure model steam turbine which has been intentionally mistuned is investigated at the resonance point of an eigenfrequency crossing an engine order. Strain gauge measurements as well as tip timing analysis have been used, whereby a very good agreement is found between the methods. To enhance the interpretation of the data measured, an analytical mass-spring-model, which incorporates degrees of freedom for the blades as well as for the rotor shaft, is presented. The vibration amplitude varies strongly from blade to blade. This is caused by the mistuning parameters and the coupling through the rotor shaft. This circumferential blade amplitude distribution is investigated at different operating conditions. The results show an increasing aerodynamic coupling with increasing fluid density, which becomes visible in a changing circumferential blade amplitude distribution. Furthermore the blade amplitudes rise non-linearly with increasing flow velocity, while the amplitude distribution is almost independent. Additionally, the mechanical and aerodynamic damping parameters are calculated by means of a non-linear regression method. Based on measurements at different density conditions, it is possible to extrapolate the damping parameters down to vacuum conditions, where aerodynamic damping is absent. Hence the material damping parameter can be determined.


2020 ◽  
Vol 8 (6) ◽  
pp. 5402-5411

The idea of DC-DC converter with multi-input is yet to attain a vital role in the field of 'hybrid energy system (HES)' integration and electric vehicle applications. So, the analysis of the dynamic behavior of the multi input converters is crucial in designing a proper controller to achieve a stable performance. This paper reports a 'small signal model (SSM)' and the performance analysis of a 'dual-input DC-DC converter (DIC)'. The parasitic resistances of capacitor and inductor are considered in the modelling. The significant transfer function (TF)s are derived with the help of the SSM, and the Bode plots for the TFs have been obtained. The performance analysis shows that the derived TFs allow better closed loop performance of the system. The simulation of the DIC converter in MATLAB/ Simulink® has been carried out and the simulation waveforms are presented. A hardware setup of the DIC converter is fabricated and experimented in the laboratory. The dynamic performance of the DIC is analyzed under the variations in the source and load conditions. The presented converter with a closed loop controller can be used in the applications to formulate a HES with solar-PV, battery, fuel cell, etc. Also the performance comparison of the DIC converter has been performed with other reported converters which shows that the DIC converter has higher efficiency and several other potential merits.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Elizabeth Lainez-Cerón ◽  
Aurelio López-Malo ◽  
Enrique Palou ◽  
Nelly Ramírez-Corona

Abstract The dynamic performance of a microwave-assisted extraction (MAE) was studied during the extraction of eucalyptus essential oil. The effect of different process variables such as solid/liquid ratio (1:1, 1:3, or 1:5), stirring speed (0, 200, or 400 rpm), and power microwave output (360, 450, or 540 W) on obtained yield, energy requirements and environmental impact were assessed. The maximum yield was 1.26 ± 0.01% and the steam generation velocities between 4.8 and 8.8 g/min favor the extraction. In terms of environmental impact, the lowest EI99 value obtained was 6.93 ± 0.1 mPT/g. A multi-response optimization was performed to identify the operating conditions that maximize yield, while minimize energy requirements and environmental impact. Temperature dynamics and extraction kinetics were fitted to a second-order transfer function model, aimed to evaluate the role of heating patterns on the process performance. Finally, a controlled temperature experiment was carried out under the optimal conditions.


Sign in / Sign up

Export Citation Format

Share Document