Compressor Volute Design System: Part II — New Volute Design System Approach

Author(s):  
Guy Phuong ◽  
Sylvester Abanteriba ◽  
Paul Haley

Volutes are widely used in industrial process, refrigeration system, small gas turbines and gas pipeline centrifugal compressors as the transition from the impeller-diffuser to the pipings, because of their simple structure, ease of production and wide operating range. This paper illustrates a new design tool that incorporates a new volute design system that integrates and automates geometry generation, grid generation and aerodynamic analysis. In optimizing the available technology in terms of grid generation, CFD, and computer graphics, the program will utilize existing technology used by industry to generate a powerful volute design tool. The design tool is programmed in a way that integrates the features and methods a designer would use for volute design. This is fundamentally by means of geometrical constraints and/or functional relationships. Grids can be generated in minutes accommodating geometrical changes thus reducing the bottlenecks associated with geometry/grid generation for CFD applications. Prior to most CFD analysis work, a structured grid must be produced ensuring high quality such that convergence is assured and the time to convergence of the solution is minimized. However, there are usually only a few people that have the required skills to produce the geometry and generate a high quality structured grid. In essence, the tool provides a sidestep around both the geometry generation and the grid generation process. It automates the process such that anybody can produce a high quality grid from the geometry and move straight to the CFD component of the work and hence can incorporate CFD as part of the design process. The volute design tool will enable the user to generate a family of volutes and display 2D volute cross sections and 3D solid models of the scroll, diffuser inlet, discharge conic, and connecting channel. Separate interfaces will be written to accommodate the different operating systems. The geometry generation will be written in windows however, a separate interface will be written to produce the grid being compatible in NT, Unix, and Linux platforms.

Author(s):  
Guy Phuong ◽  
Sylvester Abanteriba ◽  
Paul Haley ◽  
Philippe Guillerot

Volutes are widely used in centrifugal compressors for industrial processes, refrigeration systems, small gas turbines and gas pipelines. However, large costs associated with the volute design and analysis process can be reduced with the introduction of a software design system that ties together both geometry creation and mesh generation having the ultimate intent of improving stage efficiency. Computational Fluid Dynamics (CFD) has become an integral part of engineering design. High quality grids need to be produced as part of the analysis process. Engineers of different expertise may be required to determine volute design constraints and parameters, produce the geometry, and generate a high quality grid. The current research aims to develop and demonstrate a volute design tool that allows design engineers the ability to easily and efficiently generate volute geometry and automate grid generation by means of geometrical constraints using functional relationships. The approach was outlined in [1]. Visualization of volute geometry can be in two-dimensional (2D) or three-dimensional (3D) modes. Control of the diffuser upstream of the scroll, the scroll itself and the conic are totally integrated in the design system. The user can position the conic anywhere in space and control the shape of the conic centroid curve, therefore having complete control over the development of the tongue region. The program will output data for automated grid generation where user can control resulting grid properties. Once the desired design configuration has been determined, the users can output the geometry surfaces and wireframes to a Computer Aided Design (CAD) package for production. Every little detail is also incorporated into the software from volute draft angle, discharge conic centroid shape, to cross section fillet radii. Upon entering all the required constraints and parameters of the volute, the geometry is created in seconds. Grids can be generated in minutes accommodating geometrical changes thus reducing the bottlenecks associated with geometry/grid generation for CFD applications.


Author(s):  
C B Allen

The EROS (European ROtorcraft Software) project was a three-year, European Commission funded, collaborative project between research institutes, universities and industry, with the goal of producing a practical computational fluid dynamic (CFD)-based design tool for rotor blade design. The overlapping mesh, or CHIMERA, approach was adopted for structured grid generation within the project. The specifics of volume grid generation in GEROS, the EROS grid generator, are presented here. The capabilities and effectiveness of GEROS are demonstrated, and sample grids are shown for fixed-wing hovering rotor and forward-flight rotor cases.


Author(s):  
Shahrokh Shahpar ◽  
Leigh Lapworth

A parametric design system suitable for inclusion in an automatic optimization process is presented. The system makes use of a multi-block structured grid generation system specially designed for the rapid meshing of two-dimensional, quasi-three-dimensional, and three-dimensional single passage as well as multi-passage, multi-row turbomachinery blades. Full annulus viscous meshes of the order of five to ten million mesh points for the complete bypass assembly of the low pressure compression (LPC) system can be generated in a matter of minutes. PADRAM offers a major new design capability where the optimisation of multi-passage three-dimensional blades and its circumferential pattern is done simultaneously in one system. Successful usage of PADRAM in a number of design, optimisation and analysis applications has recently been demonstrated and reported herein.


Author(s):  
Wen-Hao Cai ◽  
Jie-Min Zhan ◽  
Ying-Ying Luo

Abstract Recently, a series of automatic structured grid generation methods for different fields or specific problems have been proposed by various researchers, but these methods still have some disadvantages or limitations. Therefore, in the present study, several user-intervened structured meshing methods for complex flow fields have been introduced for multiblock docking and multiblock splicing based on multiblock structured grid technology. Besides, three applications compared with the other methods or experiments are discussed to illustrate the crucial workflow of the user-intervened partitioning. The successful implementation of these partitioning examples demonstrates the feasibility and effectiveness of the methods described herein. And the techniques and criteria summarized in the present paper are quite practical and helpful for high-quality meshing.


2021 ◽  
Vol 13 (7) ◽  
pp. 4006
Author(s):  
Lisa Branchini ◽  
Maria Chiara Bignozzi ◽  
Benedetta Ferrari ◽  
Barbara Mazzanti ◽  
Saverio Ottaviano ◽  
...  

Ceramic tile production is an industrial process where energy efficiency management is crucial, given the high amount of energy (electrical and thermal) required by the production cycle. This study presents the preliminary results of a research project aimed at defining the benefits of using combined heat and power (CHP) systems in the ceramic sector. Data collected from ten CHP installations allowed us to outline the average characteristics of prime movers, and to quantify the contribution of CHP thermal energy supporting the dryer process. The electric size of the installed CHP units resulted in being between 3.4 MW and 4.9 MW, with an average value of 4 MW. Data revealed that when the goal is to maximize the generation of electricity for self-consumption, internal combustion engines are the preferred choice due to higher conversion efficiency. In contrast, gas turbines allowed us to minimize the consumption of natural gas input to the spray dryer. Indeed, the fraction of the dryer thermal demand (between 600–950 kcal/kgH2O), covered by CHP discharged heat, is strictly dependent on the type of prime mover installed: lower values, in the range of 30–45%, are characteristic of combustion engines, whereas the use of gas turbines can contribute up to 77% of the process’s total consumption.


1991 ◽  
Vol 113 (2) ◽  
pp. 290-295 ◽  
Author(s):  
H. Kumakura ◽  
T. Matsumura ◽  
E. Tsuruta ◽  
A. Watanabe

A control system has been developed for a high-quality generating set (150-kW) equipped with a two-shaft gas turbine featuring a variable power turbine nozzle. Because this generating set satisfies stringent frequency stability requirements, it can be employed as the direct electric power source for computer centers without using constant-voltage, constant-frequency power supply systems. Conventional generating sets of this kind have normally been powered by single-shaft gas turbines, which have a larger output shaft inertia than the two-shaft version. Good frequency characteristics have also been realized with the two-shaft gas turbine, which provides superior quick start ability and lower fuel consumption under partial loads.


Author(s):  
А.И. Гайкович ◽  
С.И. Лукин ◽  
О.Я. Тимофеев

Процесс создания проекта судна или корабля рассматривается как преобразование информации, содержащейся в техническом задании на проектирование, нормативных документах и знаниях проектанта, в информацию, объем которой позволяет реализовать проект. Проектирование может быть представлено как поиск решения в пространстве задач. Построение цепочки последовательно решаемых задач составляет методику проектирования. Проектные задачи могут быть разбиты на две группы. Первая группа ‒ это полностью формализуемые задачи, для решения которых есть известные алгоритмы. Например, построение теоретического чертежа по известным главным размерениям и коэффициентам формы. Ко второй группе задач можно отнести трудно формализуемые или неформализуемые задачи. Например, к задачам этого типа можно отнести разработку общего расположения корабля. Важнейшим инструментом проектирования современного корабля или судна является система ав­томатизированного проектирования (САПР). Решение САПР задач первой группы не представляет проблемы. Введение в состав САПР задач второй группы подразумевает разработку специального ма­тематического аппарата, базой для которого, которым является искусственный интеллект, использующий теорию нечетких множеств. Однако, настройка искусственных нейронных сетей, создание шкал для функций принадлежности элементов нечетких множеств и функций предпочтений лица принимающего решения, требует участие человека. Таким образом, указанные элементы искусственного интеллекта фиксируют качества проек­танта как специалиста и создают его виртуальный портрет. The process of design a project of a ship is considered as the transformation of information contained in the design specification, regulatory documents and the designer's knowledge into information, the volume of which allows the project to be implemented. Designing can be represented as a search for a solution in the space of problems. The construction of a chain of sequentially solved tasks constitutes the design methodology. Design problems can be divided into two groups. The first group is completely formalizable tasks, for the solution of which there are known algorithms. For example, the construction of ship's surface by known main dimensions and shape coefficients. Tasks of the second group may in­clude those which are difficult to formalize or non-formalizable. For example, tasks of this type can include develop­ment of general arrangement of a ship. The most important design tool of a modern ship or vessel is a computer-aided design system (CAD). The solu­tion of CAD problems of the first group is not a problem. Introduction of tasks of the second group into CAD implies development of a special mathematical apparatus, the basis for which is artificial intelligence, which uses the theory of fuzzy sets. However, the adjustment of artificial neural networks, the creation of scales for membership functions of fuzzy sets elements and functions of preferences of decision maker, requires human participation. Thus, the above elements of artificial intelligence fix the qualities of the designer as a specialist and create his virtual portrait.


2019 ◽  
Vol 45 (4) ◽  
Author(s):  
Barbora Vojáčková ◽  
Jan Tippner ◽  
Petr Horáček ◽  
Luděk Praus ◽  
Václav Sebera ◽  
...  

Failure of a tree can be caused by a stem breakage, tree uprooting, or branch failure. While the pulling test is used for assessing the first two cases, there is no device-supported method to assess branch failure. A combination of the optical technique, pulling test, and deflection curve analysis could provide a device-supported tool for this kind of assessment. The aim of the work was to perform a structural analysis of branch response to static mechanical loading. The analyses were carried out by finite element simulations in ANSYS using beam tapered elements of elliptical cross-sections. The numerical analyses were verified by the pulling test combined with a sophisticated optical assessment of deflection evaluation. The Probabilistic Design System was used to find the parameters that influence branch mechanical response to loading considering the use of cantilever beam deflection for stability analysis. The difference in the branch’s deflection between the simulation and the experiment is 0.5% to 26%. The high variability may be explained by the variable modulus of the elasticity of branches. The finite element (FE) sensitivity analysis showed a higher significance of geometry parameters (diameter, length, tapering, elliptical cross-section) than material properties (elastic moduli). The anchorage rotation was found to be significant, implying that this parameter may affect the outcome in mechanical analysis of branch behavior. The branch anchorage can influence the deflection of the whole branch, which should be considered in stability assessment.


Sign in / Sign up

Export Citation Format

Share Document