Advanced Components for PEMFC Stacks

Author(s):  
Chinbay Fan ◽  
Michael Onischak ◽  
William Liss

Currently, fuel cell cost reduction and long life are major priorities for fuel cells to be commercially successful for vehicle, stationary, or portable power applications. In the last five years, Gas Technology Institute (GTI) has formulated and developed a low cost, long lifetime, high conductivity proton exchange membrane (PEM) yielding state-of-the-art fuel cell performance. Additionally, a non-coated, corrosion-resistant metal alloy bipolar separator plate has been patented and tested for both hydrogen-fueled and direct methanol fueled PEMFC applications. Tests in fuel cells plus out-of-cell ASTM corrosion tests have shown very low corrosion rates under fuel cell operating conditions. Metal alloy separator plates have run for over 23,000 hours in cells with corrosion rates an order of magnitude less than the DOE target of 1 μA/cm2. GTI’s fuel cell polymer membrane research focused on three criteria: (1) use of low cost materials; (2) polymer structures stable under fuel cell operating conditions; and (3) performance equal or better than current Nafion membrane electrode assemblies (MEAs). Fluorine-containing polymers were eliminated due to cost issues, environmental factors, and the negative influence fluorine ion loss has on metallic separator plates. The polymer membrane material was synthesized and cast into films, then fabricated into MEAs. The cost of the membrane (raw materials plus film processing materials) is estimated to be less than $10/m2 — or less than 10% of available technology. A variety of out-of-cell testing showed the membrane has sufficient strength, flexibility, and conductivity to serve as an ion conducting membrane for fuel cells. A series of 60 cm2 active area single cells and short stacks were operated over a wide range of fuel cell conditions, showing state-of-the-art MEA performance with long-term polymer stability.

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1061 ◽  
Author(s):  
Raja Rafidah R. S. ◽  
Rashmi W. ◽  
Khalid M. ◽  
Wong W. Y. ◽  
Priyanka J.

Proton exchange membranes (PEMs) play a pivotal role in fuel cells; conducting protons from the anode to the cathode within the cell’s membrane electrode assembles (MEA) separates the reactant fuels and prevents electrons from passing through. High proton conductivity is the most important characteristic of the PEM, as this contributes to the performance and efficiency of the fuel cell. However, it is also important to take into account the membrane’s durability to ensure that it canmaintain itsperformance under the actual fuel cell’s operating conditions and serve a long lifetime. The current state-of-the-art Nafion membranes are limited due to their high cost, loss of conductivity at elevated temperatures due to dehydration, and fuel crossover. Alternatives to Nafion have become a well-researched topic in recent years. Aromatic-based membranes where the polymer chains are linked together by aromatic rings, alongside varying numbers of ether, ketone, or sulfone functionalities, imide, or benzimidazoles in their structures, are one of the alternatives that show great potential as PEMs due totheir electrochemical, mechanical, and thermal strengths. Membranes based on these polymers, such as poly(aryl ether ketones) (PAEKs) and polyimides (PIs), however, lack a sufficient level of proton conductivity and durability to be practical for use in fuel cells. Therefore, membrane modifications are necessary to overcome their drawbacks. This paper reviews the challenges associated with different types of aromatic-based PEMs, plus the recent approaches that have been adopted to enhance their properties and performance.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Viktor Johánek ◽  
Anna Ostroverkh ◽  
Roman Fiala ◽  
Andrii Rednyk ◽  
Vladimír Matolín

The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions.


Author(s):  
Q. G. Yan ◽  
H. Toghiani

The cold-start behavior and the effect of subzero temperatures on fuel cell performance were studied using a 25-cm2 PEMFC. The fuel cell system was housed in an environmental chamber that allowed the system to be subjected to temperatures ranging from sub-freezing to those encountered during normal operation. Fuel cell cold-start was investigated under a wide range of operating conditions. The cold-start measurements showed that the cell was capable of starting operation at −5 °C without irreversible performance loss when the cell was initially dry. The fuel cell was also able to operate at low environmental temperatures, down to −15 °C. However, irreversible performance losses were found if the cell cathode temperature fell below −5 °C during operation. Freezing of the water generated by fuel cell operation damaged fuel cell internal components. Several low temperature failure cases were investigated in PEM fuel cells that underwent sub-zero start and operation from −20 °C. Cell components were removed from the fuel cells and analyzed with scanning electron microscopy (SEM). Significant damage to the MEA and backing layer was observed in these components after operation below −5 °C. Catalyst layer delamination from both the membrane and the gas diffusion layer (GDL) was observed, as were cracks in the membrane, leading to hydrogen crossover. The membrane surface became rough and cracked and pinhole formation was observed in the membrane after operation at subzero temperatures. Some minor damage was observed to the backing layer coating Teflon and binder structure due to ice formation during operation.


2006 ◽  
Vol 3 (3) ◽  
pp. 226-233 ◽  
Author(s):  
Andrea Baratella ◽  
Roberto Bove ◽  
Piero Lunghi

Testing the performance of fuel cells is an important key for verifying technology improvements and for demonstrating their potential. However, due to the novelty of this technology, there is not a standardized procedure for testing fuel cell performance. In order to fully investigate fuel cell performance, the behavior must be known under a wide range of operational conditions. Furthermore, in order to compare results coming from different test teams, a set of procedures and parameters to evaluate single cell performance should be defined. The research group of the Fuel Cell Laboratory of the University of Perugia is conducting performance tests on single cells, focusing on defining test procedures to find effective parameters to be used to compare tests performed by different teams. This work demonstrates how the testing parameters developed by the team allow one to perform advanced control on test procedures, to understand test results, and to compare them with tests carried out under different operational conditions. The entire analysis is easily conducted by using a single parameter variation hyperspace approach. The experimental results obtained on single fuel cells are reported.


Author(s):  
Shuo-Jen Lee ◽  
Kung-Ting Yang ◽  
Yu-Ming Lee ◽  
Chi-Yuan Lee

In this research, electrochemical impedance spectroscopy is employed to monitor the resistance of a fuel cell during operation with different operating conditions and different materials for the bipolar plates. The operating condition variables are cell humidity, pure oxygen or air as oxidizer, and current density. Three groups of single cells were tested: a graphite cell, a stainless steel cell (treated and original), and a thin, small, treated stainless steel cell. A treated cell here means using an electrochemical treatment to improve bipolar plate anticorrosion capability. From the results, the ohmic resistance of a fully humidified treated stainless steel fuel cell is 0.28 Ω cm2. Under the same operating conditions, the ohmic resistance of the graphite and the original fuel cell are each 0.1 Ω cm2 and that of the small treated cell is 0.3 Ω cm2. Cell humidity has a greater influence on resistance than does the choice of oxidizer; furthermore, resistance variation due to humidity effects is more serious with air support. From the above results, fuel cells fundamental phenomenon such as ohmic resistance, charge transfer resistance, and mass transport resistance under different operating conditions could be evaluated.


Author(s):  
Mohammad Kazemi Nasrabadi ◽  
Amir Ebrahimi-Moghadam ◽  
Mohammad Hosein Ahmadi ◽  
Ravinder Kumar ◽  
Narjes Nabipour

Due to low working temperature, high energy density and low pollution, proton exchange fuel cells have been investigated under different operating conditions in different applications. Using platinum catalysts in methanol fuel cells leads to increasing the cost of this kind of fuel cell which is considered as a barrier to the commercialism of this technology. For this reason, a lot of efforts have been made to reduce the loading of the catalyst required on different supports. In this study, carbon black (CB) and carbon nanotubes (CNT) have been used as catalyst supports of the fuel cell as well as using the double-metal combination of platinum-ruthenium (PtRu) as anode electrode catalyst and platinum (Pt) as cathode electrode catalyst. The performance of these two types of electro-catalyst in the oxidation reaction of methanol has been compared based on electrochemical tests. Results showed that the carbon nanotubes increase the performance of the micro-fuel cell by 37% at maximum power density, compared to the carbon black. Based on thee-electrode tests of chronoamperometry and voltammetry, it was found that the oxidation onset potential of methanol for CNT has been around 20% less than CB, leading to the kinetic improvement of the oxidation reaction. The current density of methanol oxidation reaction increased up to 62% in CNT sample compared to CB supported one, therefore the active electrochemical surface area of the catalyst has been increased up to 90% by using CNT compared to CB which shows the significant rise of the electrocatalytic activity in CNT supported catalyst. Moreover, the resistance of the CNT supported sample to poisonous intermediate species has been found 3% more than CB supported one. According to the chronoamperometry test results, it was concluded that the performance and sustainability of the CNT electro-catalyst show remarkable improvement compared to CB electro-catalyst in the long term.


MRS Bulletin ◽  
2005 ◽  
Vol 30 (8) ◽  
pp. 581-586 ◽  
Author(s):  
Robert W. Lashway

AbstractThe articles in this issue of MRS Bulletin highlight the enormous potential of fuel cells for generating electricity using multiple fuels and crossing a wide range of applications. Fuel cells convert chemical energy directly into electrical energy, and as a powergeneration module, they can be viewed as a continuously operating battery.They take in air (or pure oxygen, for aerospace or undersea applications) and hydrocarbon or hydrogen fuel to produce direct current at various outputs. The electrical output can be converted and then connected to motors to generate much cleaner and more fuelefficient power than is possible from internal combustion engines, even when combined with electrical generators in today's hybrid engines. The commercialization of these fuel cell technologies is contingent upon additional advances in materials science that will suit the aggressive electrochemical environment of fuel cells (i.e., both reducing an oxidizing) and provide ionic and electrical conductance for thousands of hours of operation.


Author(s):  
C. W. Hong ◽  
C. H. Cheng ◽  
K. Fei

This paper describes the fundamental theory, algorithm and computation methods to predict the performance of proton exchange membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFC) using a simplified computational fluid dynamics (CFD) approach. Based on the common transport phenomenon inside both fuel cells, the mass, momentum, energy and species equations were derived. Darcy laws were employed to simplify the momentum equation and also to linearize the species equation. The mathematical model was solved in various flow channel designs and some membrane electrode assembly (MEA) options. The major concern is mainly on the cathode side, in the PEMFC case, that dominates the performance deterioration due to potential loss in the flow field. In the case of DMFCs, both anode and cathode sides are simulated. The methanol crossover effect is also included. This virtual performance test bench plays an important role in the prototype fuel cell design. The computer aided design tool is proved to be useful in configuration designs. Additionally, it provides the detailed transport phenomenon inside the fuel cell stack.


2018 ◽  
Vol MA2018-01 (32) ◽  
pp. 1992-1992
Author(s):  
Mohamed El Hannach ◽  
Ka Hung Wong ◽  
Yadvinder Singh ◽  
Narinder Singh Khattra ◽  
Erik Kjeang

The hydrogen fuel cell is a promising technology that supports the development of sustainable energy systems and zero emission vehicles. One of the key technical challenges for the use of fuel cells in the transportation sector is the high durability requirements 1–3. One of the key components that control the overall life time of a hydrogen fuel cell is the ionomer membrane that conducts the protons and allows the separation between the anode and the cathode. During fuel cell operation, the membrane is subjected to two categories of degradation: mechanical and chemical. These degradations lead to reduction in the performance, crossover of reactants between anode and cathode and ultimately total failure of the fuel cell. The mechanical degradation occurs when the membrane swells and shrinks under the variation of the local hydration level. This leads to fatigue of the ionomer structure and ultimately irreversible damage. However, under pure mechanical degradation the damage takes a very long time to occur 4,5. Sadeghi et al. 5 observed failure of the membrane after 20,000 of accelerated mechanical stress testing. This translates into a longer lifetime in comparison to what is observed in field operation 6. The chemical degradation on the other hand is caused by the presence of harmful chemicals such as OH radicals that attack the side chains and the main chains of the ionomer 7,8. Such attacks weaken the structural integrity of the membrane and make it prone to severe mechanical damage. Hence understanding the effect of combining both categories of membrane degradation is the key to accurate prediction of the time to failure of the fuel cell. In this work we propose a novel model that represents accurately the structural properties of the membrane and couples the chemical and the mechanical degradations to estimate when the ultimate failure is initiated. The model is based on a network of agglomerated fibrils corresponding to the basic building block of the membrane structure 9–11. The mechanical and chemical properties are defined for each fibril and probability functions are used to evaluate the likelihood of a fibril to break under certain operating conditions. The description of the fundamentals behind the approach will be presented. Two set of simulations will be presented and discussed. The first one corresponding to standard testing scenarios that were used to validate the model. The second set of results will highlight the impact of coupling both degradation mechanisms on the estimation of the failure initiation time. The main strengths of the model and the future development will be discussed as well. T. Sinigaglia, F. Lewiski, M. E. Santos Martins, and J. C. Mairesse Siluk, Int. J. Hydrogen Energy, 42, 24597–24611 (2017). T. Jahnke et al., J. Power Sources, 304, 207–233 (2016). P. Ahmadi and E. Kjeang, Int. J. Energy Res., 714–727 (2016). X. Huang et al., J. Polym. Sci. Part B Polym. Phys., 44, 2346–2357 (2006). A. Sadeghi Alavijeh et al., J. Electrochem. Soc., 162, F1461–F1469 (2015). N. Macauley et al., J. Power Sources, 336, 240–250 (2016). K. H. Wong and E. Kjeang, J. Electrochem. Soc., 161, F823–F832 (2014). K. H. Wong and E. Kjeang, ChemSusChem, 8, 1072–1082 (2015). P.-É. A. Melchy and M. H. Eikerling, J. Phys. Condens. Matter, 27, 325103–6 (2015). J. A. Elliott et al., Soft Matter, 7, 6820 (2011). L. Rubatat, G. Gebel, and O. Diat, Macromolecules, 37, 7772–7783 (2004).


Author(s):  
Lorenzo Cozzi ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Savino Depalo ◽  
Pio Astrua ◽  
...  

Abstract The overall fraction of the power produced by renewable sources in the energy market has significantly increased in recent years. The power output of most of these clean sources is intrinsically variable. At present day and most likely in the upcoming future, due to the lack of inexpensive and reliable large energy storage systems, conventional power plants burning fossil fuels will still be part of the energy horizon. In particular, power generators able to promptly support the grid stability, such as gas turbines, will retain a strategic role. This new energy scenario is pushing gas turbine producers to improve the flexibility of their turbomachines, increasing the need for reliable numerical tools adopted to design and validate the new products also in operating conditions far from the nominal one. Especially when dealing with axial compressors, i.e. machines experiencing intense adverse pressure gradients, complex flow structures and severe secondary flows, CFD modelling of offdesign operation can be a real challenge. In this work, a state-of-the art CFD framework for RANS analysis of axial compressors is presented. The various aspects involved in the whole setup are discussed, including boundary conditions, meshing strategies, mixing planes modelling, tip clearance treatment, shroud leakages and turbulence modelling. Some experiences about the choice of these aspects are provided, derived from a long-date practice on this kind of turbomachines. Numerical results are reported for different full-scale compressors of the Ansaldo Energia fleet, covering a wide range of operating conditions. Furthermore, details about the capability of the setup to predict compressor performance and surge-margin have been added to the work. In particular, the setup surge-margin prediction has been evaluated in an operating condition in which the turbomachine experiences experimental stall. Finally, thanks to several on-field data available at different corrected speeds for operating conditions ranging from minimum to full load, a comprehensive validation of the presented numerical framework is also included in the paper.


Sign in / Sign up

Export Citation Format

Share Document