Conceptual Study of Counter-Rotating Turbofan Engines

Author(s):  
Ne´stor Gonza´lez Di´ez ◽  
Arvind G. Rao ◽  
Jos van Buijtenen

The dramatic growth that air traffic has experienced in the last years is not likely to slow down in the future. The situation for the airlines has however been critical due to the large share of the operating costs corresponding to fuel. On the other hand, the society demands quieter aircraft which is then translated into stricter regulations. The Advisory Council for Aeronautics Research in Europe (ACARE) has set an ambitious array of objectives to be accomplished by 2020. It is often claimed that complying with those targets will not require evolution but, rather, revolution. One of the potential future engine configurations being considered is the counter-rotating turbofan (CRTF) concept. This paper addresses the possibilities of improvement that the CRTF can offer with respect to the specific fuel consumption, emissions and noise as compared to the baseline engine, the GE90. Semi-empirical correlations and methodologies have been used for the study. First a Blade Element Method (BEM) is developed to estimate the performance of the fan and to build confidence upon the applied loss and deviation angle models. Next, the design methodology is applied to three cases: a single-stage fan featuring the reference properties of the GE90 engine; a counter-rotating fan (CRF) fan with similar properties as a GE90 fan, but with a lower rotational speed; and a CRF with higher fan pressure ratio (FPR) for lower specific fuel consumption. Finally, noise emission by all the three configurations are estimated by noise models available in the literature. Reductions of equivalent perceived noise level (EPNL) were found to be possible if a CRF is used instead of the baseline single-stage arrangement. Other noise descriptors are also reduced by a similar amount. Approximately equal noise levels are expected if the CRF is of higher pressure than the baseline.

2019 ◽  
Vol 26 (2) ◽  
pp. 61-68
Author(s):  
Robert Jakubowski

Abstract Current trends in the high bypass ratio turbofan engines development are discussed in the beginning of the paper. Based on this, the state of the art in the contemporary turbofan engines is presented and their change in the last decade is briefly summarized. The main scope of the work is the bypass ratio growth analysis. It is discussed for classical turbofan engine scheme. The next step is presentation of reach this goal by application of an additional combustor located between high and low pressure turbines. The numerical model for fast analysis of bypass ratio grows for both engine kinds are presented. Based on it, the numerical simulation of bypass engine increasing is studied. The assumption to carry out this study is a common core engine. For classical turbofan engine bypass ratio grow is compensated by fan pressure ratio reduction. For inter turbine burner turbofan, bypass grown is compensated by additional energy input into the additional combustor. Presented results are plotted and discussed. The main conclusion is drawing that energy input in to the turbofan aero engine should grow when bypass ratio is growing otherwise the energy should be saved by other engine elements (here fan pressure ratio is decreasing). Presented solution of additional energy input in inter turbine burner allow to eliminate this problem. In studied aspect, this solution not allows to improve engine performance. Specific thrust of such engine grows with bypass ratio rise – this is positive, but specific fuel consumption rise too. Classical turbofan reaches lower specific thrust for higher bypass ratio but its specific fuel consumption is lower too. Specific fuel consumption decreasing is one of the goal set for future aero-engines improvements.


Author(s):  
Adel Ghenaiet

This paper presents an evolutionary approach as the optimization framework to design for the optimal performance of a high-bypass unmixed turbofan to match with the power requirements of a commercial aircraft. The parametric analysis had the objective to highlight the effects of the principal design parameters on the propulsive performance in terms of specific fuel consumption and specific thrust. The design optimization procedure based on the genetic algorithm PIKAIA coupled to the developed engine performance analyzer (on-design and off-design) aimed at finding the propulsion cycle parameters minimizing the specific fuel consumption, while meeting the required thrusts in cruise and takeoff and the restrictions of temperatures limits, engine size and weight as well as pollutants emissions. This methodology does not use engine components’ maps and operates on simplifying assumptions which are satisfying the conceptual or early design stages. The predefined requirements and design constraints have resulted in an engine with high mass flow rate, bypass ratio and overall pressure ratio and a moderate turbine inlet temperature. In general, the optimized engine is fairly comparable with available engines of equivalent power range.


Author(s):  
R. Hirschkron ◽  
R. H. Davis

Long endurance naval patrol aircraft of the future will require more efficient advanced turboprop powerplants. Engines used in this kind of application will have performance requirements emphasizing prolonged endurance and very low specific fuel consumption for cruise and part-power loiter operation. Regenerative, regenerative/intercooled and advanced conventional cycle screening studies were carried out to select the cycle pressure ratio and turbine temperature for each type, considering the effects on installed performance and weight. Design and cycle choices were studied in each engine category including recuperator types, effectiveness, pressure drop, bypass bleed and variable area turbine nozzle. The engine characteristics of each type were then compared using a representative mission. The advanced conventional engine showed the largest potential, the regenerative second and the regenerative/intercooled the least promise for lower installed fuel consumption and improved mission performance.


Author(s):  
Konstantinos G. Kyprianidis ◽  
Andrew M. Rolt ◽  
Tomas Grönstedt

The reduction of CO2 emissions is strongly linked with the improvement of engine specific fuel consumption, along with the reduction of engine nacelle drag and weight. One alternative design approach to improving specific fuel consumption is to consider a geared fan combined with an increased overall pressure ratio intercooled core performance cycle. The thermal benefits from intercooling have been well documented in the literature. Nevertheless, there is very little information available in the public domain with respect to design space exploration of such an engine concept when combined with a geared fan. The present work uses a multidisciplinary conceptual design tool to analyze the option of an intercooled core geared fan aero engine for long haul applications with a 2020 entry into service technology level assumption. With minimum mission fuel in mind, the results indicate as optimal values a pressure ratio split exponent of 0.38 and an intercooler mass flow ratio of 1.18 at hot-day top of climb conditions. At ISA midcruise conditions a specific thrust of 86 m/s, a jet velocity ratio of 0.83, an intercooler effectiveness of 56%, and an overall pressure ratio value of 76 are likely to be a good choice. A 70,000 lbf intercooled turbofan engine is large enough to make efficient use of an all-axial compression system, particularly within a geared fan configuration, but intercooling is perhaps more likely to be applied to even larger engines. The proposed optimal jet velocity ratio is actually higher than the value one would expect by using standard analytical expressions, primarily because this design variable affects core efficiency at mid-cruise due to a combination of several different subtle changes to the core cycle and core component efficiencies at this condition. The analytical expressions do not consider changes in core efficiency and the beneficial effect of intercooling on transfer efficiency, nor do they account for losses in the bypass duct and jet pipe, while a relatively detailed engine performance model, such as the one utilized in this study, does. Mission fuel results from a surrogate model are in good agreement with the results obtained from a rubberized-wing aircraft model for some of the design parameters. This indicates that it is possible to replace an aircraft model with specific fuel consumption and weight penalty exchange rates. Nevertheless, drag count exchange rates have to be utilized to properly assess changes in mission fuel for those design parameters that affect nacelle diameter.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Syed J. Khalid

Cruise specific fuel consumption (SFC) of turbofan engines is a key metric for increasing airline profitability and for reducing CO2 emissions. Although increasing design bypass ratio (BPR) of separate exhaust turbofan configurations improves cruise SFC, further improvements can be obtained with online control actuated variable geometry modulations of bypass nozzle throat area, core nozzle throat area, and compressor variable vanes (CVV/CVG). The scope of this paper is to show only the benefits possible, and the process used in determining those benefits, and not to suggest any particular control algorithm for searching the best combination of the control effectors. A parametric cycle study indicated that the effector modulations could increase the cruise BPR, core efficiency, transmission efficiency, propulsive efficiency, and ideal velocity ratio resulting in a cruise SFC improvement of as much as 2.6% depending upon the engine configuration. The changes in these metrics with control effector variations will be presented. Scheduling of CVV is already possible in legacy digital controls; perturbation to this schedule and modulation of nozzle areas should be explored in light of the low bandwidth requirements at steady-state cruise conditions.


Author(s):  
Adel Ghenaiet

This paper deals with a parametric study and an optimization for the design variables of a high bypass unmixed turbofan equipping commercial aircrafts. The objective of the first part of this study is to highlight the effects of the principal design parameters (bypass ratio, compression ratios, turbine inlet temperature etc..) on the uninstalled performance, in terms of specific thrust and specific fuel consumption. The second part concerns the optimization, aiming at finding the optimum design parameters concurrently minimizing the specific fuel consumption at cruise, and meeting the thrust requirement at takeoff. The cycle analyzer (on-design and off-design) as coupled to the optimization algorithm MMFD by adopting a random multi-starts search strategy is shown to be stable and converging. The predefined requirements and constraints have dictated utilizing an engine with a high-bypass ratio, high-pressure ratio and a moderate turbine inlet temperature. In general, the obtained results compare fairly well with typical data available for an equivalent ‘reference’ engine. This elaborated methodology is shown to be consistent with the conceptual design requirements and accuracy, because, it does not use components’ characteristics, and operates on simplifying assumptions. This present methodology can be readily adapted for other configurations of aero-engines as well, and easily integrated in a multi-disciplinary design approach.


Author(s):  
Joachim Kurzke

The potential for improving the thermodynamic efficiency of aircraft engines is limited because the aerodynamic quality of the turbomachines has already achieved a very high level. While in the past increasing burner exit temperature did contribute to better cycle efficiency, this is no longer the case with today’s temperatures in the range of 1900...2000K. Increasing the cycle pressure ratio above 40 will yield only a small fuel consumption benefit. Therefore the only way to improve the fuel efficiency of aircraft engines significantly is to increase bypass ratio — which yields higher propulsive efficiency. A purely thermodynamic cycle study shows that specific fuel consumption decreases continuously with increasing bypass ratio. However, thermodynamics alone is a too simplistic view of the problem. A conventional direct drive turbofan of bypass ratio 6 looks very different to an engine with bypass ratio 10. Increasing bypass ratio above 10 makes it attractive to design an engine with a gearbox to separate the fan speed from the other low pressure components. Different rules apply for optimizing turbofans of conventional designs and those with a gearbox. This paper describes various criteria to be considered for optimizing the respective engines and their components. For illustrating the main differences between conventional and geared turbofans it is assumed that an existing core of medium pressure ratio with a two stage high pressure turbine is to be used. The design of the engines is done for takeoff rating because this is the mechanically most challenging condition. For each engine the flow annulus is examined and stress calculations for the disks are performed. The result of the integrated aero-thermodynamic and mechanical study allows a comparison of the fundamental differences between conventional and geared turbofans. At the same bypass ratio there will be no significant difference in specific fuel consumption between the alternative designs. The main difference is in the parts count which is much lower for the geared turbofan than for the conventional engine. However, these parts will be mechanically much more challenging than those of a conventional turbofan. If the bypass ratio is increased significantly above 10, then the geared turbofan becomes more and more attractive and the conventional turbofan design is no longer a real option. The maximum practical bypass ratio for ducted fans depends on the nacelle drag and how the installation problems can be solved.


Author(s):  
Carlos J. Mendez ◽  
Ramkumar N. Parthasarathy ◽  
Subramanyam R. Gollahalli

Alcohols serve as an alternate energy resource to the conventional petroleum-based fuels. The objective of this study was to document the performance and emission characteristics of blends of n-propanol and Jet A fuel in a small-scale gas turbine engine. The experiments were conducted in a 30kW gas turbine engine with a single-stage centrifugal flow compressor, annular combustion chamber and a single-stage axial flow turbine. In addition to neat propanol and Jet A fuel, three blends, with 25%, 50% and 75% of propanol by volume, were used as the fuels. The thrust, thrust-specific fuel consumption, and the concentrations of CO and NOx in the exhaust were measured and compared with those measured with Jet A fuel. The engine was operated at the same throttle settings with all the fuels. The operational range of engine rotational speed was shifted downwards with the addition of propanol due to its lower heating value. The thrust specific fuel consumption increased with the addition of propanol, while the CO emission index increased and NOx emission index decreased.


2020 ◽  
pp. 15-23
Author(s):  
Олег Владимирович Кислов ◽  
Михаил Анатольевич Шевченко

A promising direction in aviation is the creation of anaircraft for supersonic cruise speeds (Mach 3...4). It is known that ramjet engines are more preferable for Mach numbers larger 3. However, they do not have starting thrust and uneconomical at subsonic flight speeds. At the same time, at subsonic flight speeds, turbofan engines are the most expedient. The combination of the positive properties of turbofan engines at subsonic speeds and a ramjet engines at supersonic speeds is possible by using duct-burning turbofan engine, which can operate at the ramjet mode with the blocked gas turbine duct at supersonic flight conditions. At this mode, duct-burning turbofan engine turns into ramjet engine, which, however, has special features due to the presence of fan in front of the combustion chamber, which operates in turbine mode or in zero power mode and also because of the outlet jet, which has annular shape, flows out from the duct causes the appearance of bottom drag. The presence of bottom drag requires both the development of a mathematical model for its calculation and taking into account its influence on the choice of the control law for the nozzle outlet area. The article presents a mathematical model of the working process of duct-burning turbofan engine at ramjet mode, taking into account the presence of fan in the flow path and bottom drug. Using the developed mathematical model, the regularities of changes in the internal and effective thrust, as well as the specific fuel consumption, depending on the relative fuel consumption and the critical section of the nozzle at a given altitude and flight speed are established. The critical section of the nozzle is the main regulating factor, and the relative fuel consumption is related to the main regulating factor - the fuel consumption. These patterns are useful for choosing a control program.There is such a combination of regulating factors whichprovides two extremes in the regularities of trust and specific fuel consumption changes: the mode of minimum specific fuel consumption and the mode of maximum thrust. In addition, the influence of gas underexpansion in the nozzle on the thrust-economic parameters of the engine and the required area of the nozzle outlet section were estimated. The obtained regularities are advisable to use when engine control program is chosen.


Author(s):  
M. N. Khan ◽  
Ibrahim M. Alarifi ◽  
I. Tlili

Abstract Environmentally friendly and effective power systems have been receiving increased investigation due to the aim of addressing global warming, energy expansion, and economic growth. Gas turbine cycles are perceived as a useful technology that has advanced power capacity. In this research, a gas turbine cycle has been proposed and developed from a simple and regenerative gas turbine cycle to enhance performance and reduce Specific fuel consumption. The impact of specific factors regarding the proposed gas turbine cycle on thermal efficiency, net output, specific fuel consumption, and exergy destruction, have been inspected. The assessments of the pertinent parameters were performed based on conventional thermodynamic energy and exergy analysis. The results obtained indicate that the peak temperature of the Proposed Gas Turbine Cycle increased considerably without affecting fuel consumption. The results show that at Pressure Ratio (rp = 6) the performance of the Proposed Gas Turbine Cycle is much better than Single Gas Turbine Cycle but the total exergy destruction of Proposed Gas Turbine Cycle higher than the SGTC.


Sign in / Sign up

Export Citation Format

Share Document