Assessment of a Novel Non-Axial Counter-Rotating Compressor Concept for Aero-Engines

Author(s):  
Quentin Dejour ◽  
Huu Duc Vo

This paper presents the first assessment of a new non-axial counter-rotating compressor concept. This concept consists of replacing the stator of a mixed-flow compressor stage or the diffuser of a centrifugal compressor stage with a counter-rotating rotor that will turn the flow back to the axial direction with much lower diffusion factor, while providing the equivalent in work of the upstream mixed-flow rotor or impeller. This concept has two advantages. First, the very high stage pressure rise means that only a single counter-rotating rotor may be required, making mechanical implementation simpler than for multi-stage axial counter-rotating compressors. Second, the replacement of the high flow turning (high loss) stator/diffuser in a non-axial stage with a low flow turning counter-rotating rotor gives the new concept potential for achieving higher efficiency than conventional non-axial compressors. As a first proof of concept, a subsonic counter-rotating mixed-flow compressor and its conventional (i.e. rotor-stator) equivalent have been designed with the intent of being implemented in a test rig. CFD simulations have been carried out for a comparative evaluation of both configurations. Results show that the counter-rotating mixed-flow compressor produces more than double the pressure rise of its conventional version with a slightly higher peak-efficiency while having a smaller axial length. Moreover, the counter-rotating configuration has a better stall margin than its conventional counterpart, for which the boundary layer separation from excessive flow turning in the stator causes early stall.

Author(s):  
Hamid Hazby ◽  
Michael Casey ◽  
Ryusuke Numakura ◽  
Hideaki Tamaki

This paper describes the design of a transonic mixed flow compressor stage for an extreme duty, with an extremely high flow coefficient (Φ) of 0.25 and a high isentropic pressure rise coefficient (ψ) of 0.56. The impeller design makes use of modern aerodynamic practice from radial and transonic axial compressors, whereby the aerodynamic blade shape involved arbitrary surfaces on several spanwise sections. Some aspects of the aerodynamic optimization of the design were limited by mechanical considerations, but nevertheless the test data obtained on a prototype stage demonstrates that acceptable performance levels can be achieved at these extreme design conditions, although map width enhancement devices were needed to obtain an acceptable operating range. The test data is compared with CFD predictions to demonstrate the validity of the design methods used.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Jichao Li ◽  
Juan Du ◽  
Mingzhen Li ◽  
Feng Lin ◽  
Hongwu Zhang ◽  
...  

The effects of water ingestion on the performance of an axial flow compressor are experimentally studied with and without endwall treatment. The background to the work is derived from the assessment of airworthiness for an aero-engine. The stability-enhancing effects with endwall treatments under rain ingestion are not previously known. Moreover, all the endwall treatments are designed under dry air conditions in the compressor. Water ingestion at 3% and 5% relative to the design mass flow proposed in the airworthiness standard are applied to initially investigate the effects on the performance under smooth casing (SC). Results show that the water ingestions are mainly located near the casing wall after they move through the rotor blade row. The pressure rise coefficient increases, efficiency declines, and torque increases under the proposed water ingestion. The increase of the inlet water increases the thickness of the water film downstream the rotor blade row and aggravates the adverse effects on the performances. Subsequently, three endwall treatments, namely circumferential grooves, axial slots, and hybrid slots–grooves, are tested with and without water ingestion. Compared with no water ingestion, the circumferential grooves basically have no resistance to the water ingestion. The axial slots best prevent the drop of the pressure rise coefficient induced by water ingestion, and hybrid slots–grooves are the second-best place owing to the contribution of the front axial slots. Therefore, the hybrid slots–grooves can not only extend the stall margin with less efficiency penalty compared with axial slots, but also prevent rain ingestion from worsening the compressor performance.


Author(s):  
D. Ramesh Rajakumar ◽  
S. Ramamurthy ◽  
M. Govardhan

Experimental Investigations are carried out to study the effect of tip clearance flow in a mixed flow compressor stage. Two configurations, namely; constant and variable clearance gaps between impeller and stationary shroud are considered. For the purpose of the present investigations, a mixed flow compressor stage is designed and fabricated. The flow investigations were carried out in a closed circuit compressor rig. Detailed steady and unsteady measurements were carried out for three clearance gaps, namely; 0.5 mm, 0.75 mm, 0.9 mm. From the experimental investigations it is shown that constant tip clearance configurations show better performance in terms of pressure ratio and efficiency compared to variable clearance configurations. For a given configuration the pressure ratio and efficiency of the stage decrease with increase in the tip gap without indicating any optimum value. Tip clearance flow has considerable effect on the flow through the diffuser and the unsteady flow gets amplified and carried away into the vane diffuser.


Author(s):  
Ankit Bhai Patel ◽  
K. Viswanath ◽  
Dhyanjyoti Deb Nath

Performance enhancement in terms of stall margin increment, increased pressure rise coefficient and increased efficiency is of great need for low speed axial fans. Stacking line modifications in terms of sweep, skew, dihedral or combination of these, as well as blade tip geometry modifications are assumed to be one of the ways to achieve finite performance improvement. Non radial stacking of blade profiles modifies secondary flows, tip vortex effects, hub passage vortex and thus affects aerodynamic performance parameters such as stall margin, efficiency, pressure rise, blade loading. In literature many studies have confined to comparison of few cases which led to conflicting results as modification of stacking line may have different effects in different cases. In the present work, comparison of performance of axial fan rotor with three different blade configurations BSL (baseline), SWP (swept blade) and EXTN (swept blade with extended tip) are considered. The BSL configuration is designed on basis of non-free vortex design. The SWP configuration is obtained by shifting radial stacking line of the BSL in axial flow direction by 10° (Forward sweep). The EXTN configuration is obtained by extending tip profile on pressure surface as well as suction surface by 3% locally. Experiments have been conducted on these three configurations to study effects of these modifications on aerodynamic performance. The flow field has been surveyed using Kiel probe, Three hole pressure probe at many flow rates starting from fully open to fully closed. Unsteady flow analysis at exit of rotors of all configurations is carried out using fast response pressure probe. Experimental results show slight performance improvement in terms of increased stall margin, efficiency, as well as total pressure rise for SWP rotor as well as EXTN rotor compared to BSL rotor at low flow coefficients.


Author(s):  
Jens Ortmanns

In order to increase the efficiency of a compressor module, several loss sources such as aerofoil profile loss, secondary loss and clearance flow phenomena must be taken into account and balanced in the most efficient way. This current document presents the results of a numerical investigation based on a conventionally loaded high pressure compressor stage with different inlet and exit swirls. The effects of changing the degree of reaction on the compressor stage flow pattern is analysed in detail. In general, the correlation between the overall stage efficiency at constant pressure ratio and the degree of stage reaction is low. Nevertheless, the results show a direct impact on the rotor tip leakage flow and the secondary flow phenomena in the stator end-wall region when the degree of reaction is modified which is driven by the change in static pressure rise between the rotor and the stator passages. The balance of these two loss sources might have an impact on the efficiency and the stall behaviour of a multi-stage compressor.


Author(s):  
Juan Du ◽  
Joerg R. Seume

Casing treatments (CTs) have been proved to beneficially affect the behavior of tip clearance flow and compressor stability. This paper presents the design of casing treatment for a mixed-flow compressor with a very small tip gap of 0.1mm. In the first part, the potential of applying two traditional types of casing treatments, i.e. circumferential grooves and axial slots, to enhance the stability of a mixed-flow compressor is investigated. The flow details in the reference compressor with smooth casing are examined first. It is found that a separating vortex is formed due to the reversed flow on the blade suction side near the rotor trailing edge at the near-stall point. It is supposed to be responsible for the decrease in total pressure ratio when the compressor approaches to stall. The numerical stall, i.e. the breakdown of the simulation, is initiated from the spillage of tip leakage flow over the rotor blade leading edge. The effect of circumferential grooves on the compressor performances is not remarkable. The implement of axial slots ameliorates the total pressure ratio and extend the flow range substantially, but with higher efficiency penalty than the circumferential grooves. The recirculation formed in the axial skewed slots eliminates the separation vortex near the trailing edge and suppresses the spillage of the tip leakage flow forward the rotor leading edge simultaneously. The axial skewed slots are further designed and optimized numerically by DoE (Design of Experiments). As DoE factors the axial length, the height, the open area ratio, and the number per blade passage of the slots are varied. Their effects on the two target values stall margin and polytropic efficiency are investigated. The plot of stall margin improvement (SMI) with a function of the peak efficiency improvement (PEI) indicates that the SMI changes reversely with the PE. There are two trends in the correlation curves of SMI with PE. For the configurations with the open area ratio of 20%, the SMI is changed from 9% to 23% with 1% decrease in PE by varying other three factors. For the CTs with the open area ratio of 60% the augment in SMI from 17.8% to 26.3% produces extra efficiency loss of 4.2%.


Author(s):  
Gregory S. Bloch ◽  
Walter F. O’Brien

Dynamic compression system response is a major concern in the operability of aircraft gas turbine engines. Multi-stage compression system computer models have been developed to predict compressor response to changing operating conditions. These models require a knowledge of the wide-range, steady-state operating characteristics as inputs, which has limited their use as predicting tools. The full range of dynamic axial-flow compressor operation spans forward and reversed flow conditions. A model for predicting the wide flow range characteristics of axial-flow compressor stages was developed and applied to a 3-stage, low-speed compressor with very favorable results and to a 10-stage, high-speed compressor with mixed results. Conclusions were made regarding the inception of stall and the effects associated with operating a stage in a multistage environment. It was also concluded that there are operating points of an isolated compressor stage that are not attainable when that stage is operated in a multi-stage environment.


1960 ◽  
Vol 11 (2) ◽  
pp. 159-170 ◽  
Author(s):  
M. D. Wood ◽  
J. H. Horlock ◽  
E. K. Armstrong

SummaryExperimentally it is shown that variation of axial spacing between neighbouring blade rows can alter the stall characteristics of a compressor stage. The stall cell patterns of this compressor stage are described in detail and changes of slope in stage temperature and pressure rise characteristics are explained in terms of stall propagation. Strain gauge tests on stator blades are used to indicate the possibility of large dynamic stresses occurring when the stall cell frequency is equal to the blade natural bending frequency.


2006 ◽  
Vol 129 (3) ◽  
pp. 778-784 ◽  
Author(s):  
I. Roumeliotis ◽  
K. Mathioudakis

In the present paper, experimental work concerning the effect of water injection on a compressor stage is presented. The effect on compressor stage performance and stability is examined for water injection up to 2%. The behavior of the airflow in the blade rows is examined through aerodynamic measurements. The results indicate that although the water injection appears to not have any significant effect on the flow pattern and to stage pressure rise and stall margin, there is a measurable effect on compression efficiency, which seems to result mainly from losses of a mechanical nature and water acceleration. The efficiency degradation is proportional to the water ratio entering the engine.


Sign in / Sign up

Export Citation Format

Share Document