On Choosing the Optimal Impeller Exit Velocity Triangles in Preliminary Design

2021 ◽  
Author(s):  
Fangyuan Lou ◽  
Nicole L. Key

Abstract Impeller discharge flow plays an important role in centrifugal compressor performance and operability for two reasons. First, it determines the work factor and relative diffusion for the impeller. Second, it sets the flow into the downstream stationary diffusion system. The choice made in the preliminary design phase for the impeller exit velocity triangle is crucial for a successful design. The state-of-the-art design approach for determining the impeller exit velocity triangle in the preliminary design phase relies on several empirical guidelines, i.e. maximum work factor and diffusion ratio for an impeller, the optimal range of absolute flow angle, etc. However, as modern compressors continue pushing toward higher efficiency and higher work factor, this design approach falls short in providing exact guidance for choosing an optimal impeller exit velocity triangles due to its empirical nature as well as the competing mechanism of the two trends. In light of this challenge, this paper introduces a reduced-dimension, deterministic approach for the design of the impeller exit velocity triangle. The method gauges the design of the impeller exit velocity triangle from a different design philosophy using a relative diffusion effectiveness parameter and is validated using 6 impeller designs, representative of applications in both turbochargers and aero engines. Furthermore, with the deterministic method in place, optimal impeller exit velocity triangles are explored over a broad design space, and a one-to-one mapping from a selection of impeller total-to-total pressure ratios and backsweep angles to a unique optimal impeller exit velocity triangle is provided. This new approach is demonstrated, and discussions regarding the influences of impeller total-to-total pressure ratio, isentropic efficiency, and backsweep angle on the optimal impeller exit velocity triangle are presented.

Author(s):  
I. Kassens ◽  
M. Rautenberg

In a centrifugal compressor adjustable inlet guide vanes (IGV) in front of the impeller are used to regulate the pressure ratio and the mass flow. The stationary measurement of the velocity profile in front of the impeller with different angles of the IGV displays shock losses at the inlet edge of blade of the impeller. In the partial-load region (e.g. partial-load efficiency) the radial distribution of the flow influences considerably the performance of the impeller. The tested compressor consists of an adjustable IGV with straight vanes, a shrouded impeller and a vaneless, parallel diffuser. In the first measurement location, behind the IGV, total pressure, static pressure and flow angle were measured with a 5-hole cylinder probe. In the second measurement location, in front of the impeller, the measurement of the total pressure was carried out with a Kiel probe and the flow angle with a Cobra probe accordingly the static wall pressure was measured. Taking into consideration the fundamental thermodynamical equations it was possible to determine the velocity profiles because of the measured distributions of the flow angle in these two measurement locations. For different angles of the IGV and with various mass flows the distributions of the deflection defect behind the IGV are described. Starting with the measured distributions of the flow in front of the impeller the flow angles at the impeller inlet are calculated and the distributions of the incidence angle at the impeller inlet are figured out.


Author(s):  
Berardo Paradiso ◽  
Cornelia Santner ◽  
Josef Hubinka ◽  
Emil Go¨ttlich ◽  
Martin Hoeger

The design of turbine frames with turning vanes, known as turning mid-turbine frames (TMTF), becomes of great importance for high by-pass ratio engines with counter-rotating turbines. To achieve a more efficient low-pressure turbine the overall diffusion and radial offset should be increased. One goal of the EU project DREAM is to analyse the flow through a TMTF and a downstream arranged counter rotating LP rotor. The investigation of these complex interrelationships has been performed in the unique two-spool continuously operating transonic test turbine facility at Graz University of Technology. The test setup consists of an unshrouded HP stage, the TMTF and a shrouded LP rotor. The shafts of both turbines are mechanically independent, so the test rig allows a realistic two shaft turbine operation. The TMTF flow field is highly complex. It is a turbulent and unsteady flow dominated by strong secondary flows and vortex-interactions. The upstream transonic high pressure turbine stage produces a complex inflow with high levels of turbulence, stationary and rotating wakes and vortical structures. Therefore the application of advanced measurement techniques is necessary. To describe the HP-TMTF interaction time-resolved pressure measurements have applied within the project. The TMTF was instrumented with 10 fast response pressure transducers; static pressure tap recordings on the strut and on the TMTF end-walls have been also applied. Five hole probe, total pressure and total temperature rakes have been additionally acquired in the planes just in front of the struts and downstream to evaluate the performance of the TMTF. The results of these conventional techniques are presented in this work and they represent the necessary starting point for the evaluation and the description of the flow field. The idea is to start the study analysing the mean quantities and the overall performance of the two stages for different conditions and to leave the analysis of the time-resolved results for further investigation. Detailed investigations will start from the data presented in this paper; indeed, the use of unsteady measurement techniques is time consuming and cannot be performed for such a large amount of flow conditions, radial planes and HP vane - TMTF relative positions. Three operating conditions for different clocking positions have been considered. The variation of the operating conditions has been achieved by varying the HP shaft velocity and pressure ratio, with a consequence change of pressure ratio in the LP rotor. For this analysis the LP shaft velocity was kept constant. The TMTF performance variations will be analysed in terms of total pressure loss coefficient and exit flow angle; the mean interaction between the structures coming from the HP stage and the struts will represent the interpretation key to explain these variations. This work is part of the EU project DREAM (ValiDation of Radical Engine Architecture SysteMs, contract No. ACP7-GA-2008-211861).


Author(s):  
Sridhar Murari ◽  
Sathish Sunnam ◽  
Jong S. Liu

With the advent of fast computers and availability of less costly memory resources, computational fluid dynamics (CFD) has emerged as a powerful tool for the design and analysis of flow and heat transfer of high pressure turbine stages. CFD gives an insight in to flow patterns that are difficult, expensive or impossible to study using experimental techniques. However, the application of CFD depends on its accuracy and reliability. This requires the CFD code to be validated with laboratory measurements to ensure its predictive capacity. In the continual effort to improve analysis and design techniques, Honeywell has been investigating in the use of CFD to predict the aerodynamic performance of a high pressure turbine. Reynolds Averaged Navier Stokes (RANS), unsteady models like detached eddy simulation (DES), large eddy simulation (LES), and Scale Adaptive Simulation (SAS) are used to predict the aerodynamic performance of a high pressure turbine. Mixing plane approach is used to address the flow data transport across the stationary interface in RANS simulation. The film holes on blade surface and end walls for all the analysis are modeled by using actual film hole modeling technique. The validation is accomplished with the test results of a high pressure turbine, Energy Efficient Engine (E3). The aerodynamic performance data at design point, typical off-design points are taken as test cases for the validation study. One dimensional performance parameters such as corrected mass flow rate, total pressure ratio, cycle efficiency, and two dimensional spanwise distributions of total pressure, total temperature and flow angle that are obtained from CFD results are compared with test data. Streamlines and flow field results at different measurement planes are presented to understand the aerodynamic behavior.


1986 ◽  
Author(s):  
Shimpei Mizuki ◽  
Ichiro Watanabe

A simple but accurate method of calculating ratio of relative velocities within centrifugal impeller channels is proposed using a one-dimensional flow model, whose major parameters are specific speed, non-dimensional root-mean square radius of the inducer inlet, slip factor, flow coefficient and flow angle at impeller exit. After the non dimensional relative velocity at inducer inlet and that at impeller exit are derived, the ratio of relative velocity at impeller exit to that at inducer inlet is obtained. In addition to this, the ratio is divided into two parts: one ratio for the inducer portion and another ratio for the radial portion of the impeller channel. The computations are conducted both for adiabatic inviscid flow and for two conditions assumed for viscous flow, in which one used an empirical relationship between the total pressure ratio and the peripheral speed of impeller and the other used experimental values for the total pressure ratio as a funtion of the flow rate. By the present simple method, the non-dimensional relative velocities as well as the ratios of the relative velocities for the inlets and the exits of an inducer and an impeller channel are calculated accurately.


Author(s):  
Dilipkumar Bhanudasji Alone ◽  
Subramani Satish Kumar ◽  
Shobhavathy M. Thimmaiah ◽  
Janaki Rami Reddy Mudipalli ◽  
A. M. Pradeep ◽  
...  

This paper describes the study of flow behavior of the transonic compressor stage in un-stalled and stalled conditions. Experiments were carried out in an open circuit single stage transonic axial flow compressor test rig. The test compressor was designed for 1.35 total to total pressure ratio at corrected mass flow rate of 22 kg/s. Both steady and unsteady measurements were carried out. The operating envelop of the compressor was experimentally determined to demark the stable and unstable operating range of the compressor at different operating speeds. Variations in the rotor inlet axial and tangential velocity in the tip region were studied using a calibrated single component hot wire probe. The compressor blade element performance was obtained at full flow and near stall conditions using a three hole aerodynamic probe. The variation in flow parameters like absolute flow angle, axial Mach number, absolute Mach number, tangential Mach number, static and total pressure ratio profiles at the rotor exit were obtained and their variations along the blade height were studied at full flow and near stall conditions. Static pressure variation in the tip region along the rotor chord was studied which showed reduction in slope as stall approached. Hotwire measurements showed abrupt variation in the axial velocity as compared to tangential velocity at stalled condition. It was observed that the flow turned in tangential direction at stall, as tangential component of velocity shows more fluctuations at stall in comparison with unstalled condition. The FFT analysis of the raw signals was performed and it was observed that the nature of the rotating stall was abrupt and stall cell travels nearly at half the rotor speed.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Martin Heinrich ◽  
Rüdiger Schwarze

A numerical model for the genetic optimization of the volute of a centrifugal compressor for light commercial vehicles is presented. The volute cross-sectional shape is represented by cubic B-splines and its control points are used as design variables. The goal of the global optimization is to maximize the average compressor isentropic efficiency and total pressure ratio at design speed and four operating points. The numerical model consists of a density-based solver in combination with the SSTk-ωturbulence model with rotation/curvature correction and the multiple reference frame approach. The initial validation shows a good agreement between the numerical model and test bench measurements. As a result of the optimization, the average total pressure rise and efficiency are increased by over1.0%compared to the initial designs of the optimization, while the maximum efficiency rise is nearly 2.5% atm˙corr=0.19 kg/s.


2000 ◽  
Vol 123 (3) ◽  
pp. 526-533 ◽  
Author(s):  
Maik Tiedemann ◽  
Friedrich Kost

This investigation is aimed at an experimental determination of the unsteady flowfield downstream of a transonic high pressure turbine stage. The single stage measurements, which were part of a joined European project, were conducted in the windtunnel for rotating cascades of the DLR Go¨ttingen. Laser-2-focus (L2F) measurements were carried out in order to determine the Mach number, flow angle, and turbulence distributions. Furthermore, a fast response pitot probe was utilized to determine the total pressure distribution. The measurement position for both systems was 0.5 axial rotor chord downstream of the rotor trailing edge at midspan. While the measurement position remained fixed, the nozzle guide vane (NGV) was “clocked” to 12 positions covering one NGV pitch. The periodic fluctuations of the total pressure downstream of the turbine stage indicate that the NGV wake damps the total pressure fluctuations caused by the rotor wakes. Furthermore, the random fluctuations are significantly lower in the NGV wake affected region. Similar conclusions were drawn from the L2F turbulence data. Since the location of the interaction between NGV wake and rotor wake is determined by the NGV position, the described effects are potential causes for the benefits of “stator clocking” which have been observed by many researchers.


Author(s):  
G D Gosain ◽  
R Sharma ◽  
Tae-wan Kim

In the modern era of design governed by economics and efficiency, the preliminary design of a semi-submersible is critically important because in an evolutionary design environment new designs evolve from the basic preliminary designs and the basic dimensions and configurations affect almost all the parameters related to the economics and efficiency (e.g. hydrodynamic response, stability, deck load and structural steel weight of the structure, etc.). The present paper is focused on exploring an optimum design method that aims not only at optimum motion characteristics but also optimum stability, manufacturing and operational efficiency. Our proposed method determines the most preferable optimum principal dimensions of a semi-submersible that satisfies the desired requirements for motion performance and stability at the preliminary stage of design. Our proposed design approach interlinks the mathematical design model with the global optimization techniques and this paper presents the preliminary design approach, the mathematical model of optimization. Finally, a real world design example of a semi-submersible is presented to show the applicability and efficiency of the proposed design optimization model at the preliminary stage of design.


Author(s):  
Guoming Zhu ◽  
Xiaolan Liu ◽  
Bo Yang ◽  
Moru Song

Abstract The rotating distortion generated by upstream wakes or low speed flow cells is a kind of phenomenon in the inlet of middle and rear stages of an axial compressor. Highly complex inflow can obviously affect the performance and the stability of these stages, and is needed to be considered during compressor design. In this paper, a series of unsteady computational fluid dynamics (CFD) simulations is conducted based on a model of an 1-1/2 stage axial compressor to investigate the effects of the distorted inflows near the casing on the compressor performance and the clearance flow. Detailed analysis of the flow field has been performed and interesting results are concluded. The distortions, such as total pressure distortion in circumferential and radial directions, can block the tip region so that the separation loss and the mixing loss in this area are increased, and the efficiency and the total pressure ratio are dropped correspondingly. Besides, the distortions can change the static pressure distribution near the leading edge of the rotor, and make the clearance flow spill out of the rotor edge more easily under near stall condition, especially in the cases with co-rotating distortions. This phenomenon can be used to explain why the stall margin is deteriorated with nonuniform inflows.


Author(s):  
James H. Page ◽  
Paul Hield ◽  
Paul G. Tucker

Semi-inverse design is the automatic re-cambering of an aerofoil, during a computational fluid dynamics (CFD) calculation, in order to achieve a target lift distribution while maintaining thickness, hence “semi-inverse”. In this design method, the streamwise distribution of curvature is replaced by a stream-wise distribution of lift. The authors have developed an inverse design code based on the method of Hield (2008) which can rapidly design three-dimensional fan blades in a multi-stage environment. The algorithm uses an inner loop to design to radially varying target lift distributions, an outer loop to achieve radial distributions of stage pressure ratio and exit flow angle, and a choked nozzle to set design mass flow. The code is easily wrapped around any CFD solver. In this paper, we describe a novel algorithm for designing simultaneously for specified performance at full speed and peak efficiency at part speed, without trade-offs between the targets at each of the two operating points. We also introduce a novel adaptive target lift distribution which automatically develops discontinuous changes of calculated magnitude, based on the passage shock, eliminating erroneous lift demands in the shock vicinity and maintaining a smooth aerofoil.


Sign in / Sign up

Export Citation Format

Share Document