Efficiency Maximization of Allam Cycle at a Given Combustion Temperature

2021 ◽  
Author(s):  
Yousef Haseli

Abstract This study analyzes an Allam cycle by means of analytical modeling. In a recent ASME Turbo Expo Conference (Turbo Expo 2020), an analytical formulation was presented for the net power output of a natural gas fired Allam cycle with an uncooled turbine. An algebraic expression was derived for optimum turbine inlet temperature (TIT) maximizing the cycle efficiency. In practice, TIT is constrained by durability of the turbine blade material with a maximum allowable temperature of 860 °C as reported by the cycle developers. The objective here is to determine optimum turbine inlet and exhaust pressures by maximization of the cycle efficiency subject to a fixed temperature at the combustor outlet. To avoid complexity of the analysis, reasonable simplifications are considered including negligible temperature and pressure drops between adjacent components. Analytical expressions are obtained for optimum pressure of the combustion gases at the inlet and outlet of the turbine meaning that the net cycle efficiency can be twice optimized. The optimum turbine exhaust pressure is found to be a function of (TITηtηc/Tc) where Tc denotes a cycle minimum temperature and η is the isentropic efficiency. The new expressions are used to calculate the optimum turbine inlet pressure, exhaust pressure, and maximum cycle efficiency for a practical range of the combustion temperature and varying pressure at the exit of the CO2 compressor. The relations derived in this study provide (i) a solid foundation for those unfamiliar with Allam cycle, and (ii) a useful tool for engineers to roughly estimate optimum operational regime of the cycle without a need for complex calculations.

Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4358 ◽  
Author(s):  
Jinping Wang ◽  
Jun Wang ◽  
Peter D. Lund ◽  
Hongxia Zhu

In this study, a direct recompression supercritical CO2 Brayton cycle, using parabolic trough solar concentrators (PTC), is developed and analyzed employing a new simulation model. The effects of variations in operating conditions and parameters on the performance of the s-CO2 Brayton cycle are investigated, also under varying weather conditions. The results indicate that the efficiency of the s-CO2 Brayton cycle is mainly affected by the compressor outlet pressure, turbine inlet temperature and cooling temperature: Increasing the turbine inlet pressure reduces the efficiency of the cycle and also requires changing the split fraction, where increasing the turbine inlet temperature increases the efficiency, but has a very small effect on the split fraction. At the critical cooling temperature point (31.25 °C), the cycle efficiency reaches a maximum value of 0.4, but drops after this point. In optimal conditions, a cycle efficiency well above 0.4 is possible. The maximum system efficiency with the PTCs remains slightly below this value as the performance of the whole system is also affected by the solar tracking method used, the season and the incidence angle of the solar beam radiation which directly affects the efficiency of the concentrator. The choice of the tracking mode causes major temporal variations in the output of the cycle, which emphasis the role of an integrated TES with the s-CO2 Brayton cycle to provide dispatchable power.


Author(s):  
Yasuyoshi Kato

Three systems have been proposed for advanced high temperature gas-cooled reactors (HTGRs): a supercritical carbon dioxide (S-CO2) gas turbine power conversion system; a new MicroChannel Heat Exchanger (MCHE); and a once-through-then-out (OTTO) refueling scheme with burnable poison (BP) loading. An S-CO2 gas turbine cycle attains higher cycle efficiency than a He gas turbine cycle due to reduced compression work around the critical point of CO2. Considering temperature lowering at the turbine inlet by 30°C through the intermediate heat exchange, the S-CO2 indirect cycle achieves efficiency of 53.8% at turbine inlet temperature of 820°C and turbine inlet pressure of 20 MPa. This cycle efficiency value is higher by 4.5% than that (49.3%) of a He direct cycle at turbine inlet temperature of 850°C and 7 MPa. A new MCHE has been proposed as intermediate heat exchangers between the primary cooling He loop and the secondary S-CO2 gas turbine power conversion system; and recuperators of the S-CO2 gas turbine power conversion system. This MCHE has discontinuous “S”-shape fins providing flow channels with near sine curves. Its pressure drop is one-sixth reference to the conventional MCHE with zigzag flow channel configuration while the same high heat transfer performance inherits. The pressure drop reduction is ascribed to suppression of recirculation flows and eddies that appears around bend corners of zigzag flow channels in the conventional MCHE. An optimal BP loading in an OTTO refueling scheme eliminates the drawback of its excessively high axial power peaking factor, reducing the power peaking factor from 4.44 to about 1.7; and inheriting advantages over the multi-pass scheme because of the lack of fuel handling and integrity checking systems; and reloading. Because of the power peaking factor reduction, the maximum fuel temperatures are lower than the maximum permissible values of 1250°C for normal operation and 1600°C during a depressurization accident.


Author(s):  
Jorge Faca˜o ◽  
Armando C. Oliveira

Small cogeneration (CHP) systems may lead to a significant reduction of primary energy consumption and harmful emissions. Low temperature Rankine cycles, that can be assisted by solar energy, are a possible solution for producing combined electricity and useful heat. These cycles usually use an organic working fluid. This study presents an analysis of the energetic, design and operational features, that have to be taken into account when choosing an adequate working fluid for these Organic Rankine Cycles (ORC). When using renewable energies as a heat source, like solar or geothermal, the cycles may operate at temperatures between 120°C and 230°C. A system producing 5 kW of electricity was considered as a basis of comparison. Several fluids were analysed: n-dodecane, water, toluene, cyclohexane, n-pentane, HFE7100, R123, isobutane and R245fa. The organic dry fluids, with a positive slope of the saturated vapor curve in a T-s diagram, are in principle desirable for low temperature applications, simplifying turbine design. The degree to which the fluids are drying, is generally related to their molecular weight or molecular complexity. Practical issues, like thermal stability, toxicity, flammability and cost are considered. The thermodynamic cycle efficiency is also important. The saturated vapor specific volume gives an indication of condenser size, which is related to system initial cost. A super-atmospheric (>100 kPa) saturation pressure eliminates infiltration gases, which is important for operational reasons, because infiltration reduces system efficiency. The degree of superheating was optimized for maximum cycle efficiency, with a quadratic approximation method. This optimization makes it possible to decide if it is better to have saturated vapor or superheated vapor at turbine inlet, for a fixed turbine inlet temperature. For a heat source temperature of 120°C, only toluene and isobutane present a small advantage in superheating. It is difficult to find the best fluid, which has simultaneously: high cycle efficiency, low vapor specific volume at turbine outlet, super-atmospheric saturation pressure, good thermal stability, small environmental impact, small toxicity and no flame propagation. From the point of view of cycle efficiency, n-dodecane presents the best performance. However, this fluid presents the highest saturated vapor specific volume (resulting in a larger condenser) and the smallest condenser saturation pressure (resulting in infiltration of gases). The best candidates for the cycle regarding all the aspects are: toluene, cyclohexane and n-pentane. Comparing the three fluids, toluene presents the highest efficiency, the highest impact in environment and the biggest vapor specific volume. N-pentane presents the smallest cycle efficiency and smallest vapor specific volume, but is the unique fluid with super-atmospheric saturation pressure. Cyclohexane is the fluid with lowest impact in environment.


Author(s):  
Paul A. Dellenback

An alternative configuration for a regenerative gas turbine engine cycle is presented that yields higher cycle efficiencies than either simple or conventional regenerative cycles operating under the same conditions. The essence of the scheme is to preheat compressor discharge air with high temperature combustion gases before the latter are fully expanded across the turbine. The efficiency is improved because air enters the combustor at a higher temperature, and hence heat addition in the combustor occurs at a higher average temperature. The heat exchanger operating conditions are more demanding than for a conventional regeneration configuration, but well within the capability of modern heat exchangers. Models of cycle performance exhibit several percentage points of improvement relative to either simple cycles or conventional regeneration schemes. The peak efficiencies of the alternative regeneration configuration occur at optimum pressure ratios that are significantly lower than those required for the simple cycle. For example, at a turbine inlet temperature of 1300°C (2370°F), the alternative regeneration scheme results in cycle efficiencies of 50% for overall pressure ratios of 22, whereas simple cycles operating at the same temperature would yield efficiencies of only 43.8% at optimum pressure ratios of 50, which are not feasible with current compressor designs. Model calculations for a wide range of parameters are presented, as are comparisons with simple and conventional regeneration cycles.


2020 ◽  
Vol 22 (2) ◽  
pp. 593-602 ◽  
Author(s):  
Andrey Rogalev ◽  
Vladimir Kindra ◽  
Alexey Zonov ◽  
Nikolay Rogalev ◽  
Levon Agamirov

AbstractThis study aims to present a method for precooling bleed flow by water injection in the E-MATIANT cycle and to estimate its impact on the overall efficiency. The design parameters of the cycle are set up on the basis of the component technologies of today's state-of-the-art gas turbines with a turbine inlet temperature between 1100 and 1700°C. Several schemes of the E-MATIANT cycle are considered: with one, two and three combustion chambers. The optimal pressure ratio ranges for the considered turbine inlet temperatures are identified and a comparison with existing evaluations is made. For the optimal initial parameters, cycle net efficiency varies from 42.0 to 49.8%. A significant influence of turbine stage cooling model on optimal thermodynamic parameters and cycle efficiency is established. The maximum cycle efficiency is 44.0% considering cooling losses. The performance penalty due to the oxygen production and carbon dioxide capture is 20–22%.


Author(s):  
H. E. Weber

For decades large amounts of money and effort have been spent on conventional turbomachinery development. Initially improvements in performance were rapid. However, in the last two decades better performance of these machines has slowed considerably. Compressor efficiencies have been near their present limits of 88% to 92% for many years. High pressure ratios required of high performance engines are not efficiently produced in the conventional turbomachines. High pressure ratios for high cycle efficiency require many stages of conventional compression. Compressors, especially in small turbomachines, decrease in efficiency as the number of stages increase due to the large amounts of surface area and relatively large leakage passages in the higher pressure stages. The requirement for many stages of conventional compression also results in heavy machines. If high compressor pressure cannot be attained the turbine exhaust gas temperature may be considerably above the compressor discharge temperature; a regenerator or recuperator is then required for acceptable cycle efficiency. This results in considerable complication and high engine weight. Maximum turbine inlet temperatures in conventional machines have also been near their limit for many years. High temperatures and high pressures required for light weight, high efficiency machines are inconsistent with the requirements for high strength materials. To increase permissable turbine inlet temperatures compressor discharge air is used for blade cooling. Use of this air soon reaches its limit because the high pressure cooling air is then not available for power production. Engine power and cycle efficiency begins to decrease and a limit on turbine inlet temperature results. Consequently, new concepts in power and thrust production are required. One class of machines which may alleviate many of the above described problems are the wave rotors or engines (1 thru 15). These operate with time dependent flow in the moving rotor blade passages and steady flow in the stator parts.


Author(s):  
Husam Zawati ◽  
Michael Elmore ◽  
Jayanta Kapat ◽  
Narasimha Nagaiah

A simple recuperated cycle is studied and optimized in this paper. Geometrical parameters for a novel recuperator design are then optimized to minimize area density. The recuperator is where the s-CO2 is analyzed and simulated for both hot and cold sides. The design of the cycle is obtained through a study of a 100 MW net power output s-CO2 cycle, where this cycle features a turbine inlet temperature of 1023 K. The main objective of this paper is to couple a recuperated cycle with a heat exchanger. This is done through Pareto optimality to study the tradeoffs between conflicting variables. The geometry of the heat exchanger features two inlet headers attached to semirectangular channels. The thermal analysis used is based on one-dimensional finite enthalpy method, where discretization is made by equal heat transferred per element. In addition, pressure drops are calculated at both sides of main heat exchanger body. Optimized cycle based on practical parametric assumptions reveals an efficiency of 45.8% and specific power of 132.1 kJ/kg. Best design reveals channel side length of 7 mm with surrounding solid sidewall thickness of 1 mm. Pressure drops for the proposed design are 4.8% and 0.6% of the initial pressure for the hot and the cold sides, respectively. Overall length of the heat exchanger is found to be 10.7 m with an effectiveness of 96.2% and an area density of 363 m2/m3.


Author(s):  
Michael Nakhamkin ◽  
Eric C. Swensen ◽  
George Touchton ◽  
Arthur Cohn ◽  
Michael Polsky

An approach to improving the thermal cycle efficiency of combustion turbine (CT) based power plants is to develop thermal cycles with interceding, reheat, recuperation and humidification. Until recently, this was viewed by combustion turbine manufacturers as cost prohibitive and involving new operating and maintenance challenges. Also, early attempts by some manufacturers to develop sophisticated thermal cycles resulted in the realization that significant funds, personnel, and time are required. This investment could not be justified, particularly considering the availability of efficient and economical combined cycle (CC) plants. Therefore, increased efficiency for both simple and CC power plants has been achieved by raising the firing temperature and pressure of the basic Brayton cycle. However, every increase in the CT firing temperature required progressively higher development cost and increased NOx control challenges, which has re-awakened interest in advanced cycles. The Department of Energy’s Federal Energy Technology Center (FETC), in cooperation with combustion turbine manufacturers, is working on an Advanced Turbine Systems Program. The program goal is to develop technologies to provide a significant increase in natural gas-fired CC power generation plant efficiency with thermal efficiency target values in excess of 60%. Materials published in the program show that participating large CT original equipment manufacturers (OEM), are relying heavily on an increase in the CT’s firing temperature to approximately 2600 F (1700 K), with associated advancement in materials and cooling techniques, to achieve the target efficiency. Also employed are some improvements in component efficiency and various methods of utilization of heat in the bottoming cycle. The development of the necessary sophisticated materials and cooling techniques requires very significant development costs and is based on long duration and expensive experimental investigations and field demonstrations. Increasing the bottoming cycle efficiency primarily depends on the practicality of engineering solutions and capital vs operating cost trade-offs, and not on technology advancements. The current Cascaded Humidified Advanced Turbine (CHAT) technology, which utilizes existing, commercially proven combustion turbine and industrial hardware integrated in sophisticated thermal cycles, offers an achievable, practical and cost-effective alternative to a current CC plant. Current CHAT plants require relatively minimal engineering developments associated primarily with a) modification of the power shaft CT’s compressor discharge and turbine inlet plenums — for interfacing the HP shaft and other thermal cycle components — a very important engineering task, but not comparable in complexity to the development associated with further increase of the CT inlet temperature; and b) engineering of an HP expander with an inlet temperature of 1600 F (1145 K), essentially integrating steam turbine and industrial expander technologies. As it was shown collectively in the previously published references, in addition to an efficiency equal to that for CC plants (based on the same CTs), CHAT plants have significantly lower (10–20%) specific capital costs and have important operating advantages (higher than CC efficiency at part-load operation, with excellent load following and dynamic benefits, including rapid start capability). Those features reduce both the CHAT plant cost of electricity and offer a method to improve improve the economics of power generation systems due to the operational flexibility added by a CHAT plant. One of the most effective ways to increase the CHAT plant efficiency is to increase the HP expander inlet temperature from the current level of 1600 F (1145 K), which represents the level of the combustion turbine technology of the late 1960’s – early 1970’s. EPRI and ESPC have identified that a CHAT plant, based on the current combustion turbine technology (with turbine inlet temperature (TIT) of 2550 F (1670 K)), could achieve the ATS Program target efficiency of 60% with an HP expander inlet temperature of approximately 2000 F (1365 K). HP expanders with this relatively low turbine inlet temperature, as shown later, will require cooling of only the first stage nozzles and stage blades, if the newest single crystal alloys are used. However, the increase of the HP expander inlet temperature will be complicated by the relatively-high inlet pressure. This presents a significant engineering challenge, particularly if one would like to preserve the excellent start-up characteristics and other dynamic benefits of the CHAT plant. EPRI and ESPC are co-sponsoring the development of a high pressure expander with a target inlet temperature of 2000 F (1365 K). It will be shown that this HP expander, when integrated with a power shaft based on W 501 FA modified for the CHAT application, results in a power plant that will achieve the ATS Program target efficiency of 60%. This paper presents a) current CHAT plant’s performance and cost characteristics, b) findings of the project for the development of the HP expander with target temperature of 2000 F (1365 K), and c) a comparison of the advanced CHAT concept’s performance and development costs to those of the ATS program. This paper also shows how, in the future, the new ATS technology can be incorporated into even more efficient, cost-effective and reliable CHAT power plants.


2002 ◽  
Vol 124 (3) ◽  
pp. 441-446 ◽  
Author(s):  
P. A. Dellenback

An alternative configuration for a regenerative gas turbine engine cycle is presented that yields higher cycle efficiencies than either simple or conventional regenerative cycles operating under the same conditions. The essence of the scheme is to preheat compressor discharge air with high-temperature combustion gases before the latter are fully expanded across the turbine. The efficiency is improved because air enters the combustor at a higher temperature, and hence heat addition in the combustor occurs at a higher average temperature. The heat exchanger operating conditions are more demanding than for a conventional regeneration configuration, but well within the capability of modern heat exchangers. Models of cycle performance exhibit several percentage points of improvement relative to either simple cycles or conventional regeneration schemes. The peak efficiencies of the alternative regeneration configuration occur at optimum pressure ratios that are significantly lower than those required for the simple cycle. For example, at a turbine inlet temperature of 1300°C (2370°F), the alternative regeneration scheme results in cycle efficiencies of 50 percent for overall pressure ratios of 22, whereas simple cycles operating at the same temperature would yield efficiencies of only 43.8 percent at optimum pressure ratios of 50, which are not feasible with current compressor designs. Model calculations for a wide range of parameters are presented, as are comparisons with simple and conventional regeneration cycles.


Author(s):  
Xurong Wang ◽  
Yi Wu ◽  
Jiangfeng Wang ◽  
Yiping Dai ◽  
Danmei Xie

The transcritical CO2 cycle (TCO2 cycle) exhibits good performance in low-grade waste heat recovery area. In this study, a TCO2 cycle was employed as a bottoming cycle to recover the waste heat in the topping recompression supercritical CO2 Brayton cycle (SCO2 cycle). A detailed system analysis was performed of a recompression SCO2 cycle combined with a TCO2 cycle to improve the efficiency of energy conversion. Thermodynamic analysis, calculation of heat exchangers’ area and economic analysis were considered. The SCO2 turbine expansion ratio, TCO2 turbine inlet pressure, high temperature recuperator (HTR) effectiveness and condensation temperature were studied to investigate their effect on the system performance. For the basic analysis, SCO2 turbine inlet temperature was conservatively selected to be 550 °C and the compressor outlet pressure set at 20 MPa. For these operating conditions the proposed combined SCO2-TCO2 cycle yielded about 46% thermal efficiency at a SCO2 turbine expansion ratio of 2.7 and TCO2 turbine inlet pressure of 10 MPa. Similarly, the capital cost per net power output of the combined cycle was found as 6.6 k$/kW, which was ∼ 6% more expensive than that of the recompression SCO2 cycle without the bottoming cycle under the same operating condition. An optimum TCO2 turbine inlet pressure and an optimum SCO2 turbine expansion ratio existed where the system thermal efficiency reached the maximum value. Furthermore, the system thermal efficiency was very sensitive to the changes in the condensation temperature and the HTR effectiveness. The HTR effectiveness also had a strong effect on the ratio of heat exchangers’ cost to the plant capital cost. Additionally, increasing SCO2 turbine inlet temperature would significantly improve the cycle overall thermal efficiency and decrease the plant capital cost per net power output.


Sign in / Sign up

Export Citation Format

Share Document