Mass Conserving Elastohydrodynamic Piston Lubrication Model With Incorporated Crown Lands

Author(s):  
Mustafa Duyar

This paper describes a comprehensive model of Elastohydrodynamic piston lubrication, incorporated the crown lands into solution domain to characterize the effect of crown-liner interactions on piston motion. Elastohydrodynamic Lubrication (EHL) analysis of a piston skirt-liner conjunction is in general a useful methodology for design analysis of pistons. The diameters of piston crown lands are much less than those of skirt and liner for typical piston designs. Therefore crown lands normally do not interact with liner under usual operating conditions and hence most of the researchers exclude crown lands from the EHL analysis and mainly focus on piston skirt. However, under some of the engine operating conditions piston crown lands play important role in the secondary dynamics and tribology aspects of pistons. During the thermodynamic cycle when piston is hot and cylinder liner is relatively colder, piston thermal expansion leads to crown-liner interaction, which necessitates EHL, asperity contact and wear considerations of piston crown along with piston skirt. The simulation methodology for piston EHL analysis uses a mass-conserving algorithm for the finite volume method solution of Reynolds equation, which is coupled to elasticity relations and Greenwood-Tripp asperity contact model. Elrod’s mass conserving algorithm enables to model and analyze partially lubricated piston-liner interface by the input of oil supply and moreover rigorously handles cavitated zones, and takes into account piston ring grooves, piston cut-outs and unlubricated areas due to piston geometry. Results are presented from parametric studies that show comparisons between the analyses of the models with piston skirt lubrication only and piston lubrication, which incorporates the crown lands to the EHL domain.

2019 ◽  
Vol 20 (2) ◽  
pp. 207 ◽  
Author(s):  
Chongpei Liu ◽  
Bin Zhao ◽  
Wanyou Li ◽  
Xiqun Lu

The bushing profiles have important effects on the performance of journal bearing. In this article, the effects of plain profile, double conical profile, and double parabolic profile on the elastohydrodynamic lubrication of the journal bearing under steady operating conditions are investigated. The journal misalignment and asperity contact between journal and bushing surface are considered, while the modification of the bushing profiles due to running-in is neglected. Finite element method is used for the elastic deformation of bushing surface, while the numerical solution is established by using finite difference method and overrelaxation iterative method. The numerical results reveal that the double parabolic profile with appropriate size can significantly increase the minimum film thickness and reduce the asperity contact pressure and friction, while the maximum film pressure, load-carrying capacity, and leakage flow rate change slightly under steady operating conditions. This study may help to reduce the edge wear and prolong the service life of the journal bearing.


2010 ◽  
Vol 139-141 ◽  
pp. 1036-1039 ◽  
Author(s):  
Jian Ping Zhang ◽  
Yan Kun Jiang ◽  
Xin Liu ◽  
Zhe Lin Dong

Aiming at a large marine diesel engine, a mathematical model for the 3-D elastohydrodynamic lubrication analysis of piston ring-cylinder liner was presented. The average Reynolds equation and asperity contact approach were combined with the elastic deformation equation. The asymmetry in the circumferential direction, gas blowby and the effect of temperature and pressure on the oil density and viscosity were considered. The 3-D wear simulation of piston ring-cylinder liner was performed when the diesel engine was operated under warm start and cold start conditions, respectively. The 3-D distribution rules show that the first gas ring has the biggest wear loss, and the maximum wear loss of cylinder liner occurs in the vicinity of TDCF. Finally, the results matched well with the wear measurements, and it indicates the present method is effective and can help engineers to improve the tribological performance of the diesel engine.


Author(s):  
Xianghui Meng ◽  
Youbai Xie

The cylinder liner-piston system of internal combustion engines is one of the key friction pairs running at the most rigor working conditions. Under the influence of elastohydrodynamic lubrication and contact between the piston skirt and the liner, the dynamic process of piston is a nonlinear and stiff problem difficult to be analyzed accurately and easily. To reach a stable and rapid convergence in analysis, the MEBDF method and the multigrid method are used to solve the piston-skirt elastohydrodynamic lubrication and contact problem. Firstly the solving process of the piston dynamics is analyzed based on the MEBDF method. Then the residual equations for the elastohydrodynamic lubrication pressure are built based on the multigrid method. And the solving method of the nonlinear residual equations is presented based on the quasi Newton-Raphson method. Finally the numerical simulation program is developed based on the MEBDF method and the multigrid method. The elastohydrodynamic lubrication and contact problem of the piston skirt-liner system is simply analyzed based on the simulation. The study in this paper can provide an effective method for tribological analysis and optimization of piston–liner system in the future.


Author(s):  
Ozgur Gunelsu ◽  
Ozgen Akalin

A comprehensive piston skirt lubrication and secondary motion model that can be used for piston friction simulations was developed based on Greenwood and Tripp’s surface asperity contact model and Patir and Cheng’s modified Reynolds equation with surface flow factors. Oil flow between the skirt-liner clearances was modeled and hydrodynamic and asperity contact pressures around the skirt were calculated. Reynolds boundary conditions were applied to determine the film rupture boundaries and wetted areas. Surface roughness and roughness orientation were included in the model. Due to its important effect on pressure development in the oil film, change in the skirt profile due to elastic deformations was taken into account. Change of the skirt profile due to piston thermal expansion is also calculated using the steady-state temperature distribution of the piston corresponding to the investigated engine running conditions. A piston stiffness matrix obtained by finite element analysis was used to determine the elastic deformations of the piston skirt under the calculated oil film pressures. A two-degree-of-freedom system is formed with the forces and moments calculated by the lubrication model. These forces and moments require a coupled solution with piston position. This is achieved by applying an iterative numerical procedure based on Broyden’s scheme which seeks force and moment balance at each iteration phase making use of time step variation. The effects of various engine operating conditions and piston design parameters on piston secondary motion were investigated. Piston skirt friction force due to hydrodynamic shear forces and metal-to-metal contact is calculated.


2021 ◽  
Author(s):  
Koji Kikuhara ◽  
Philipp S Koeser ◽  
Tian Tian

Abstract It is hypothesized that the sliding surface structures improve the lubrication condition by forming an oil sump on the sliding surface, redistributing the oil, and trapping wear debris. For these reasons, the sliding surface structures have been used as a friction reduction method for a long time. However, how to optimize the sliding surface structure is still controversial. In this work, effects of microstructure laid on the cylinder liner of an internal combustion engine on twin-land oil control ring (TLOCR) and piston skirt lubrication condition were investigated by comparing friction between the conventional fine-honed liner (CFL) and the microstructured liner (MSL) which was made based on the CFL. As a result of the friction measurement using a floating liner engine, it was found that the microstructure improved lubrication condition by reducing hydrodynamic friction. On the other hand, the result showed there was a possibility that the microstructure deteriorated friction depending on the engine operating conditions.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
H. Sojoudi ◽  
M. M. Khonsari

This paper presents a simple approach to predict the behavior of friction coefficient in the sliding lubricated point contact. Based on the load-sharing concept, the total applied load is supported by the combination of hydrodynamic film and asperity contact. The asperity contact load is determined in terms of maximum Hertzian pressure in the point contact while the fluid hydrodynamic pressure is calculated through adapting the available numerical solutions of elastohydrodynamic lubrication (EHL) film thickness formula for smooth surfaces. The simulations presented cover the entire lubrication regime including full-film EHL, mixed-lubrication, and boundary-lubrication. The results of friction, when plotted as a function of the sum velocity, result in the familiar Stribeck-type curve. The simulations are verified by comparing the results with published experimental data. A parametric study is conducted to investigate the influence of operating condition on the behavior of friction coefficient. A series of simulations is performed under various operating conditions to explore the behavior of lift-off speed. An equation is proposed to predict the lift-off speed in sliding lubricated point contact, which takes into account the surface roughness.


Author(s):  
S Balakrishnan ◽  
S Howell-Smith ◽  
H Rahnejat

The article presents detailed analysis of the conforming contact between a piston and cylinder liner in a high-speed racing engine under extreme operating conditions owing to high loads and operating speeds in excess of 19 000 r/min, resulting in a high sliding velocity of 42 m/s. The analysis indicates contact forces generated in the order of 2.5 kN. The contribution due to fluid film lubrication is found to reside in iso-viscous rigid or elastic regimes of lubrication, which is insufficient to form a coherent lubricant film during some parts of the cycle, such as at top-dead-centre (TDC). The article shows that at combustion, 95 per cent of the contact can remain in boundary or mixed regimes of lubrication. Piston skirt surface modification features are used in conjunction with an electrolytically applied composite coating, Ni[SiC]p to produce advanced cylinder liners to remedy the situation. Detailed numerical analysis shows that significant improvement is achieved in the regime of lubrication condition.


Author(s):  
Mihai B. Dobrica ◽  
Michel Fillon ◽  
Mircea D. Pascovici ◽  
Traian Cicone

Surface texturing has been shown to have friction reducing / load capacity increasing effects in parallel sliders, as well as in cylinder-liner contacts and in hydrodynamic seals. However, if texture is to be regarded as the sole mean of hydrodynamic lift in parallel sliders, or as a way of improving hydrodynamic performance in slider, thrust and journal bearings, several issues have to be addressed, such as optimal texturing parameters and corresponding performance gains. This paper deals with these issues in the case of a plane inclined textured slider. Parametric studies are conducted to determine optimal texturing extents, dimple depth and texturing density, as well as the influence of the operating conditions on these optimal texturing parameters.


Author(s):  
Mahdi Mohammadpour ◽  
Stephanos Theodossiades ◽  
Homer Rahnejat

Differential hypoid gears play an important role on the Noise, Vibration and Harshness (NVH) signature of vehicles. Additionally, friction developed between their teeth flanks under extreme loading conditions adds another source of power loss in the drivetrain which can mitigate vibrational energy. The paper considers the coupling between dynamics and analytical tribology to study dynamic response of hypoid gear pairs with lateral motion of support shafts also included in the analysis framework. Friction of teeth flank pairs is assumed to follow elastohydrodynamic lubrication under elliptical point contact geometry with lubricant film behavior conforming to Non-Newtonian thermal shear, also with surface asperity interactions. Tooth Contact Analysis (TCA) has been used to obtain the input data required for the investigation. The dynamic behavior and efficiency of a differential hypoid gear pair under realistic operating conditions is determined. The proposed tribo-dynamic framework provides a useful platform to conduct an extensive series of parametric studies.


Author(s):  
Nguyen Van Liem ◽  
Wu Zhenpeng ◽  
Jiao Renqiang

The effect of the shape/size and distribution of microgeometries of textures on improving the tribo-performance of crankpin bearing is proposed. Based on a combined model of the slider-crank mechanism dynamic and hydrodynamic lubrication, the distribution density, area density, and shape of spherical textures, square-cylindrical textures, wedge-shaped textures, and a hybrid between spherical texture and square-cylindrical texture on the crankpin bearing's tribo-performance are investigated under different operating conditions of the engine. The tribological characteristic of the crankpin bearing is then evaluated via the indexes of the oil film pressure p, asperity contact force, friction force, and friction coefficient of the crankpin bearing. The research results show that the distribution density with n = 12 and m = 6, and area density with α = 30% of various microtextures have an obvious effect on ameliorating the crankpin bearings tribo-performance. Concurrently, at the mixed lubrication region, the shape of the square-cylindrical texture on improving the tribo-performance is better than the other shapes of the spherical texture, wedge-shaped texture, and spherical and square-cylindrical texture. Particularly, all the average values of the asperity contact force, friction force, and friction coefficient with a square-cylindrical texture are significantly reduced by 14.6%, 19.5%, and 34.5%, respectively, in comparison without microtextures. Therefore, the microtextures of the spherical texture applied on the bearing surface can contribute to enhance the durability and decrease the friction power loss of the engine.


Sign in / Sign up

Export Citation Format

Share Document