Microstructure, Mechanical and Tribological Properties of Reactive Magnetron Sputtered Titanium Carbide Coatings

Author(s):  
Kyriaki Polychronopoulou ◽  
Claus Rebholz ◽  
Nicholaos G. Demas ◽  
Andreas A. Polycarpou ◽  
Lefki Theodorou ◽  
...  

This study describes the correlation between the microstructure, mechanical and tribological properties of Ti1−xCx coatings (with x being in the range of 0–0.5), deposited by reactive magnetron sputtering from a Ti target in Ar/C2H2 mixtures at ∼200 °C. The mechanical and tribological properties were found to strongly depend on the chemical composition and the microstructure present. Very dense structures and highest hardness and elastic modulus, combined with low wear rates, were observed for films with chemical composition close to TiC. X-ray diffraction (XRD) studies showed that the coating deposited at high C2H2 flow rates composed of randomly oriented TiC crystallites. Morphological investigations by scanning electron microscopy (SEM) indicate that the morphology is strongly dependent on the carbon content of the coating. Coatings composition and bonding environment was investigated using X-ray photoelectron spectroscopy (XPS). Both the mechanical properties and tribological performance of the coatings were found to be dependent on carbon content.

2014 ◽  
Vol 789 ◽  
pp. 455-460 ◽  
Author(s):  
Bin Deng ◽  
Jun Fei Pei ◽  
Ye Tao

Ion implantation is an effective method to enhance hardness and wear resistance of the TiAlN coatings. In this paper, Nb and C ions are co-implanted into TiAlN coatings deposited by Magnetic Filter Arc Ion Plating (MFAIP), using a Metal Vacuum Vapor Arc (MEVVA) ion source implantor with doses of 1×1017and 5×1017ions/cm2. The microstructure, chemical composition, mechanical and tribological properties of Nb+C-implanted TiAlN coatings have been investigated by glancing incidence X-ray diffraction, X-ray photoelectron spectroscopy, nanoindentation test and SRV friction & wear tester, respectively. The results showed that the NbN and TiC phases could be detected both from the XRD and XPS profiles of as-prepared films. Nb and C ion implantation could improve the hardness, plastic deformation resistance and wear behavior of TiAlN coatings due to the energetic Nb and C ion bombardment and the formation of NbN and TiC phases.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 946
Author(s):  
Ph. V. Kiryukhantsev-Korneev ◽  
A. D. Sytchenko ◽  
S. A. Vorotilo ◽  
V. V. Klechkovskaya ◽  
V. Yu. Lopatin ◽  
...  

Coatings in the Ta-Zr-Si-B-C-N system were produced by magnetron sputtering of a TaSi2-Ta3B4-(Ta,Zr)B2 ceramic target in the Ar medium and Ar-N2 and Ar-C2H4 gas mixtures. The structure and composition of coatings were studied using scanning electron microscopy, glow discharge optical emission spectroscopy, energy-dispersion spectroscopy, and X-ray diffraction. Mechanical and tribological properties of coatings were determined using nanoindentation and pin-on-disk tests using 100Cr6 and Al2O3 balls. The oxidation resistance of coatings was evaluated by microscopy and X-ray diffraction after annealing in air at temperatures up to 1200 °C. The reactively-deposited coatings containing from 30% to 40% nitrogen or carbon have the highest hardness up to 29 GPa and elastic recovery up to 78%. Additionally, coatings with a high carbon content demonstrated a low coefficient of friction of 0.2 and no visible signs of wear when tested against 100Cr6 ball. All coatings except for the non-reactive ones can resist oxidation up to a temperature of 1200 °C thanks to the formation of a protective film based on Ta2O5 and SiO2 on their surface. Coatings deposited in Ar-N2 and Ar-C2H4 demonstrated superior resistance to thermal cycling in conditions 20-T−20 °C (where T = 200–1000 °C). The present article compares the structure and properties of reactive and “standard-inert atmosphere” deposited coatings to develop recommendations for optimizing the composition.


2001 ◽  
Vol 15 (17n19) ◽  
pp. 634-638 ◽  
Author(s):  
A. MARTEL ◽  
F. CABALLERO-BRIONES ◽  
A. IRIBARREN ◽  
R. CASTRO-RODRÍGUEZ ◽  
P. BARTOLO-PÉREZ ◽  
...  

We study by x-ray diffraction (XRD) the structural variations on a series of SnOx:F films grown by dc reactive sputtering from a metallic tin target in an Ar- O 2-Freon plasma. We found that the films tend to be crystalline when the stoichiometry approaches to that of SnO or SnO 2, being amorphous in between. We fitted the x-ray diffractograms and found that films are composed by a mixture of compounds, i.e. SnO, Sn 3 O 4, Sn 2 O 3 and SnO 2, given by the simultaneous presence of Sn +2 and Sn +4. From the analysis of the deconvoluted areas under the x-ray diffractograms we calculate the Sn +2/ Sn and Sn +4/ Sn molar fraction present in the films. The same calculations are done for the x-ray photoelectron spectroscopy (XPS) results. By applying a combinatory model we fitted the general behavior of SnO x films with different oxygen content versus the Sn +2/ Sn and Sn +4/ Sn molar fraction. Both XRD and XPS results are compared with the theoretical curve, showing a well agreement.


2017 ◽  
Vol 739 ◽  
pp. 23-29
Author(s):  
Wen Hsien Kao

The main purpose of this study is to research the tribological properties and mechanical properties of diamond-like carbon coating (DLC) used unbalanced magnetron sputtering system (UBMS). The objective is influence of various Zr target current on the properties of coatings, current from 0.0 A to 0.5 A. The cross-section morphology was observed by field emission scanning electron microscopy (FE-SEM). With the increase of the Zirconium targets current, the quantity contained of the Zirconium increases. Raman spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to analyze the microstructure properties of the coatings. The nanoindentation tester was used to measure the mechanical properties. Furthermore, the wear tests were achieved through the Schwingung Reibung and Verschliess (SRV) reciprocating wear tester under dry condition. The DLC coating was deposited used 0.4 A Zr target current possessed the lowest I(D)/I(G) ratio, the highest sp3 content and highest hardness. The DLC coating (0.4A) also displayed excellent tibological properties including the lowest friction coefficient, and wear depth.


2012 ◽  
Vol 706-709 ◽  
pp. 2596-2601
Author(s):  
E. Vogli ◽  
Fabian Hoffmann ◽  
E. Bartis ◽  
G. S. Oehrlein ◽  
Wolfgang Tillmann

It has been established that hardness and density of diamond-like carbon (DLC) layers can be raised by increasing ion energy during deposition, decreasing H-content and by increasing sp3-fraction. To confirm differences in hydrogen content of hydrogen containing and hydrogen free DLC films deposited at different bias voltages, layers were etched in oxygen atmosphere in a capacitively coupled plasma device. By employing real-time ellipsometry measurements, the H-content of the hydrogen containing a-C:H layers were estimated by determining the optical constants n and k (n-real part and k-imaginary part of the refractive index). In addition, DLC layers were analyzed by X-ray photoelectron spectroscopy to estimate the ratio of sp²- and sp³-hybridization. The mechanical and tribological properties of the coatings were evaluated by means of nanoindentation and ball-on-disc-tests. Finally correlations between these properties, H-content and sp3/sp2-ratio were obtained in an effort to explain different tribological behaviors of DLC-layers.


2007 ◽  
Vol 14 (05) ◽  
pp. 891-897
Author(s):  
YAOHUI WANG ◽  
XU ZHANG ◽  
YUANZHI XU ◽  
XIANYING WU ◽  
HUIXING ZHANG ◽  
...  

Nanocomposite nc-TiC / a-C : H films have been deposited via filtered cathodic vacuum arc technique, employing Ti target and C 2 H 2 gas as material precursors. The composition and nanostructure of film, correlated to mechanical and tribological properties of film, are varied by changing C 2 H 2 flow rate and filter coil current. Glancing angle X-ray diffraction has been used to show that salient TiC (111) peak exists in film with grain size of order of 8–10 nm, as a function of filter coil current. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) investigations demonstrate that the nc-TiC / a-C : H films mainly contain nanocrystalline graphite and sp2-bonded carbon, both as a function of C 2 H 2 flow rate. Mechanical tests confirm that the nc-TiC / a-C : H films possess superior hardness of 33.9 GPa and elastic modulus of 237.6 GPa.


2019 ◽  
Vol 71 (3) ◽  
pp. 348-356
Author(s):  
Yakup Uzun ◽  
Halim Kovacı ◽  
Ali Fatih Yetim ◽  
Ayhan Çelik

PurposeThis paper aims to investigate the effects of boriding on the structural, mechanical and tribological properties of CoCrW dental alloy manufactured by the method of selective laser melting.Design/methodology/approachIn this study, CoCrW alloy samples that are used in dentistry were manufactured by the method of laser melting, and boriding treatment was made on the samples at 900°C and 1,000°C for 1, 4 and 8 h. The structural, mechanical and tribological effects of boriding on the samples were analyzed using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, microhardness and an abrasion test device.FindingsAccording to the results, the best outcomes in terms of abrasion strength and hardness were obtained in the sample that was subjected to boriding at 1,000°C for 4 h.Originality/valueThis study produced CoCrW alloys, which are fundamental biomaterials that are used in dentistry, by a different production method called selective laser melting and improved their surface characteristics by boriding.


2011 ◽  
Vol 18 (01n02) ◽  
pp. 23-31 ◽  
Author(s):  
MANUEL GARCÍA-MÉNDEZ ◽  
SANTOS MORALES-RODRÍGUEZ ◽  
SADASIVAN SHAJI ◽  
BINDU KRISHNAN ◽  
PASCUAL BARTOLO-PÉREZ

A set of aluminium nitride ( AlN ) and oxidized AlN ( AlNO ) thin films were grown with the technique of direct current (dc) reactive magnetron sputtering. The main purpose of this investigation is to explore the influence of the oxygen on the structural properties of AlN and AlNO films. The crystalline properties and chemical identification of phases were studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. Electrical properties were analyzed from I-V measurements. It was found that films crystallized under the AlN würzite structure and presented a polycrystalline preferential growth along [0001] direction, perpendicular to substrate. Small amounts of secondary aluminium oxide phases were detected too. The oxide phases can induce defects, which can alter crystallinity of films.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 991
Author(s):  
Jacob Shiby Mathew ◽  
Liutauras Marcinauskas ◽  
Mitjan Kalin ◽  
Romualdas Kėželis ◽  
Žydrūnas Kavaliauskas ◽  
...  

Al2O3 and Al2O3-ZrO2 coatings were deposited on stainless steel using atmospheric plasma spraying. The influence of arc current and zirconia addition on the surface morphology of the coating, phase composition and tribological properties under dry sliding conditions were investigated. The addition of zirconia reduced the surface roughness of the coatings. The X-ray diffraction measurements indicated that the Al2O3 coatings were composed of β-Al2O3, α-Al2O3, and γ-Al2O3 phases. The addition of zirconia led to the formation of tetragonal and monoclinic phases of zirconia in the as-sprayed coatings. The friction coefficients of Al2O3 and Al2O3-ZrO2 coatings were similar and varied in the range of 0.72–0.75. The specific wear rates of the as-sprayed coatings were reduced with the increase of arc current. It was obtained that the wear rates of the Al2O3-ZrO2 coatings were at least three times lower compared to Al2O3 coatings.


2010 ◽  
Vol 160-162 ◽  
pp. 35-47 ◽  
Author(s):  
Bai Ming Chen ◽  
Zheng Yu Zhang ◽  
Ming Xu Wang ◽  
Guo Cai Han ◽  
Liang An

The Cu based friction composites using graphite as solid lubricant with different weight rations of Ti, i.e. 8 wt.%, 12 wt.%, 16 wt.%, 20 wt.%, were sintered by powder metallurgy (P/M) method. The structure of the composites was characterized by X-ray diffraction (XRD) and the tribological properties was studied on block-on-ring tester. XRD results verified presence of TiC phase which was in-situ synthesized through reaction of Ti and graphite in the composites, and the content of TiC was increased with the increased Ti content. The in-situ synthesized TiC phase which was fine and distributed uniformly improved tribological properties of Cu based friction composites significantly. The hardness, wear rates and friction coefficient of composites were increased with increasing amount of in-situ synthesized TiC.


Sign in / Sign up

Export Citation Format

Share Document