Prediction of Biomechanical Properties of Bone Implant Scaffolds

Author(s):  
Yaser Shanjani ◽  
Naveen Chandrashekar ◽  
Ehsan Toyserkani

This work is concerned with the 3D finite element modeling of porous implants in which the pore characteristics and distribution are taken into account. The analysis is conducted for scaffolds composed of various biocompatible materials such as Hydroxyapatite, PMMA, PEEK, Ti-6Al-4V, Silicon Nitride, Zirconia and Alumina. Furthermore, the potential of bone growth within the scaffolds is investigated using principal strain histograms of loaded scaffolds. The results show that the histogram of the principal strain resembles a top hat distribution while the porosity (void fraction) decreases. For a specific porosity, the principal strain distribution falls within the desired region (for optimal bone growth) by selecting materials with some particular Poisson’s ratio, although stress-shielding possibility rises due to an increase in the apparent stiffness of the scaffold. The increase in the apparent stiffness is a result of high Young modulus of the above-mentioned materials. The model will provide a platform for designers to adjust internal architecture features (e.g., the porosity level, shape/size/orientation of pores and the material properties) based on the host bone data prior to the scaffold fabrication.

2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0011
Author(s):  
Daniel Sturnick ◽  
Guilherme Saito ◽  
Jonathan Deland ◽  
Constantine Demetracopoulos ◽  
Xiang Chen ◽  
...  

Category: Ankle Arthritis Introduction/Purpose: Loosening of the tibial component is the primary failure mode in total ankle arthroplasty (TAA). The mechanics of the tibial component loosening has not been fully elucidated. Clinically observed radiolucency and cyst formation in the periprosthetic bone may be associated with unfavorable load sharing at and adjacent to the tibial bone-implant interface contributory to implant loosening. However, no study has fully investigated the load transfer from the tibial component to the bone under multiaxial loads in the ankle. The objective of this study was to utilize subject-specific finite element (FE) models to investigate the load transfer through tibial bone-implant interface, as well as periprosthetic bone strains under simulated multiaxial loads. Methods: Bone-implant FE models were developed from CT datasets of three cadaveric specimens that underwent TAA using a modern fixed-bearing tibial implant (a cobalt-chrome tray with a polyethylene bearing, Salto Talaris, Integra LifeSciences). Implant placement was estimated from the post-operative CT scans. Bone was modeled as isotropic elastic material with inhomogeneous Young’s modulus (determined from CT Hounsfield units) and a uniform Poisson’s ratio of 0.3. The tibial tray (Young’s modulus: 200,000 MPa, Poisson’s ratio: 0.3) and the polyethylene bearing (Young’s modulus: 600 MPa, Poisson’s ratio: 0.4) were modeled as isotropic elastic. A 100-N compressive force, a 300-N anterior force, and a 3-Nm moment were applied to two literature based loading regions on the surface of the polyethylene bearing. The proximal tibia was fixed in all directions. The bone-implant contact was modeled as frictional with a coefficient of 0.7, whereas the polyethylene bearing was bonded to the tray. Results: Along the long axis of the tibia, load was transferred to the bone primarily through the flat bone-contacting base of the tibial tray and the cylindrical top of the keel, little amount of load was transferred to the bone between those two features (Fig. 1A). Low strain was observed in bone regions medial and lateral to the keel of the tibial tray, where bone cysts were often observed clinically (Fig. 1A). On average, approximated 70% of load was transferred through the anterior aspect of the tibial tray at the flat bone-contacting base, which corresponded to the relatively high bone strain adjacent to the implant edge in the anterior bone-implant interface (Fig. 1B). Conclusion: Our results demonstrated a two-step load transfer pattern along the long axis of the tibia, revealing regions with low bone strain peripheral to the keel indicative to stress shielding. Those regions were consistent with the locations of bone cysts observed clinically, which may be explained by the stress shielding associated remodeling of bone. These findings could also describe the mechanism of implant loosening and failure. Future studies may use our model to simulate more loading scenarios, as well as different implant placement and design, to identify means to optimize load transfer to the bone and prevent stress shielding.


2020 ◽  
Vol 1000 ◽  
pp. 97-106
Author(s):  
Dian Juliadmi ◽  
Nuzul Ficky Nuswantoro ◽  
Hidayatul Fajri ◽  
Irma Yulia Indriyani ◽  
Jon Affi ◽  
...  

Research about the utilization of titanium alloy (Ti-6Al-4V ELI) as implant material in the treatment of orthopedic cases had been increasing. Health problems appear due to the drawbacks of using titanium. The lack of titanium using is bio-inertness characteristic, which decreasing its bioactivity and results in low bone growth and effect for implant failure. The titanium can be modified with coating on the surface using a bioactive substance that is natural-source hydroxyapatite. Bovine-source hydroxyapatite (bovineHA) contains apatite component that is similar to human bone apatite. The coating process was carried out using particle size variation (25 μm, 63 μm, and 125 μm) of bovineHA. The electrophoretic deposition (EPD) method was applied to coat hydroxyapatite with 10 volt for 5 minutes onto the titanium surface. The result showed that different size particles have an effect on coating properties. The coating composed by particle-sized 25 μm has better surface coverage (95.89%), indicating more particle mass (particle weight 6.97x103 μg) attached to surface material, thus resulting thick coating. The good coating characteristic using bovine-source hydroxyapatite with small particle size was expected can be used in biomedical applications due to fulfill the prerequisite of the bone implant.


2019 ◽  
Vol 15 (4) ◽  
pp. 548-554
Author(s):  
Izzawati Basirom ◽  
Mohd Afendi Rojan ◽  
Mohd Shukry Abdul Majid ◽  
Nor Alia Md Zain ◽  
Mohd Yazid Bajuri

Implant screws failure commonly occurs due to the load that constantly generated by the patient’s body to the fracture area. Bending load is often encountered in femur bone due to lateral impact which affected the bone and also the implants installed. Consequently, the load will lead to the failure of implants that can cause loosening or tightening of implants. Henceforth, in this manner, it is significant to study the bending behavior of bone implant in femur bone. The aim of this study was to analyze the stress shielding of bone implant on the internal fixator. 3D technique is able to show the overall deformation and stress distribution. The lower the biomechanical compatibility, the lower the STP value obtained. In addition, the variation of elastic modulus (E) of the screws materials, 200GPa (Stainless Steel) and 113.8GPa (Titanium) resulted in the increase of the total stress transferred (STP) between screw and bone interface. In this work, strain energy density (SED) was determined as a good indicator of stress shielding.


2019 ◽  
Vol 16 (156) ◽  
pp. 20190259 ◽  
Author(s):  
Xing Gao ◽  
Manon Fraulob ◽  
Guillaume Haïat

In recent decades, cementless implants have been widely used in clinical practice to replace missing organs, to replace damaged or missing bone tissue or to restore joint functionality. However, there remain risks of failure which may have dramatic consequences. The success of an implant depends on its stability, which is determined by the biomechanical properties of the bone–implant interface (BII). The aim of this review article is to provide more insight on the current state of the art concerning the evolution of the biomechanical properties of the BII as a function of the implant's environment. The main characteristics of the BII and the determinants of implant stability are first introduced. Then, the different mechanical methods that have been employed to derive the macroscopic properties of the BII will be described. The experimental multi-modality approaches used to determine the microscopic biomechanical properties of periprosthetic newly formed bone tissue are also reviewed. Eventually, the influence of the implant's properties, in terms of both surface properties and biomaterials, is investigated. A better understanding of the phenomena occurring at the BII will lead to (i) medical devices that help surgeons to determine an implant's stability and (ii) an improvement in the quality of implants.


2020 ◽  
Vol 321 ◽  
pp. 05016
Author(s):  
Stéphanie DELANNOY ◽  
Sarah BAÏZ ◽  
Pascal LAHEURTE ◽  
Laurence JORDAN ◽  
Frédéric PRIMA

Recent works have shown that the elastic mismatch observed at the bone / implant interface could be responsible for stress shielding issues causing bone resorption phenomena and potentially implant failures. In the present study, new advanced thermomechanical approaches leading to titanium alloys with graded elastic properties are proposed. The underlying philosophy and the whole methodology is detailed here, from the selection of candidates with large elastic variability to the creation of gradients, involving the identification of microstructure-properties relationships and the use of appropriate thermo-mechanical treatments. Applied on Ti-Nb-Zr alloys, these original routes enabled to get the following graded properties: elastic modulus from 85 to 65GPa over 400μm for TNZ alloy by surface deformation, and from 130 to 75GPa over 100μm for Ti-13-13 by preferential dissolution. These promising results thus validated the previously designed material-strategy-process combinations.


2019 ◽  
Vol 16 (2) ◽  
pp. 359-372
Author(s):  
Ravishanker Baliga ◽  
Sharat K. Rao ◽  
Raghuvir Pai ◽  
Satish B. Shenoy ◽  
Atmananda K. Hegde ◽  
...  

Purpose The purpose of this paper is to investigate by means of finite element analysis (FEA), the effect of polyethylene insert thickness and implant material, under axial loading following TKA. Design/methodology/approach The 3D geometric model of bone was processed using the CT scan data by MIMICS (3matic Inc.), package. Implant components were 3D scanned and subsequently 3D modeled using ANSYS Spaceclaim and meshed in Hypermesh (Altair Hyperworks). The assembled, meshed bone-implant model was then input to ABAQUS for FE simulations, considering axial loading. Findings Polyethylene insert thickness was found to have very little or no significance (p>0.05) on the mechanical performance, namely, stress, strain and stress shielding of bone-implant system. Implant material was found to have a very significant effect (p<0.05) on the performance parameters and greatly reduced the high stress zones up to 60 percent on the tibial flange region and periprosthetic region of tibia. Originality/value Very few FEA studies have been done considering a full bone with heterogeneous material properties, to save computational time. Moreover, four different polyethylene insert thickness with a metal-backed and all-poly tibial tray was considered as the variables affecting the bone-implant system response, under static axial loading. The authors believe that considering a full bone shall lead to more precise outcomes, in terms of the response of bone-implant system, namely, stress, strains and stress shielding in the periprosthetic region, to loading.


2009 ◽  
Vol 46 (3) ◽  
pp. 268-274 ◽  
Author(s):  
M. J. Birch ◽  
P. D. Srodon

Objective: To measure biomechanical properties of the human soft palate and the variation across anatomic regions. Design: Ex vivo analysis of human tissue. Patients/participants: Ten palates harvested from 10 normal adult human cadavers (age range, 37 to 90 years). Interventions: Computer-controlled uniaxial stress-relaxation mechanical properties tested in physiological saline at 37°C. Main Outcome Measures: Measurement of Young modulus, Poisson ratio, and determination of viscoelastic constants c, τ1, and τ2 by curve-fitting of the reduced relaxation function to the data. Results: One hundred sections were tested from the 10 palates, representative of 10 anatomic zones. The mean Young modulus range was 585 Pa at the posterior free edge to 1409 Pa at regions of attachment. The mean Poisson ratio in the inferior-superior direction was 0.45 (SD 0.26) and in the lateral direction, was 0.30 (SD 0.21). The mean viscoelastic constants for 1-mm extensions were C  =  −0.1056 (±0.1303), τ1  =  11.0369 (±9.1865) seconds, and τ2  =  0.2128 (±0.0792) seconds, and for 2-mm extensions were C  =  −0.1111 (±0.1466), τ1  =  14.3725 (±5.2701) seconds, and τ2  =  0.2094 (±0.0544) seconds. Conclusions: The results show agreement with values of the Young modulus estimated by authors (Ettema and Kuehn, 1994; Berry et al., 1999) undertaking finite element modeling of the palate. However, other modulus measurements based on closing pressure are considerably different. The spatial distribution of viscoelastic parameters across the palate shows good consistency.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
James Tedesco ◽  
Bryan E. J. Lee ◽  
Alex Y. W. Lin ◽  
Dakota M. Binkley ◽  
Kathleen H. Delaney ◽  
...  

In this pilot study, a 3D printed Grade V titanium dental implant with a novel dual-stemmed design was investigated for its biocompatibility in vivo. Both dual-stemmed (n = 12) and conventional stainless steel conical (n = 4) implants were inserted into the tibial metaphysis of New Zealand white rabbits for 3 and 12 weeks and then retrieved with the surrounding bone, fixed, dehydrated, and embedded into epoxy resin. The implants were analyzed using correlative histology, microcomputed tomography, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The histological presence of multinucleated osteoclasts and cuboidal osteoblasts revealed active bone remodeling in the stemmed implant starting at 3 weeks and by 12 weeks in the conventional implant. Bone-implant contact values indicated that the stemmed implants supported bone growth along the implant from the coronal crest at both 3- and 12-week time periods and showed bone growth into microporosities of the 3D printed surface after 12 weeks. In some cases, new bone formation was noted in between the stems of the device. Conventional implants showed mechanical interlocking but did have indications of stress cracking and bone debris. This study demonstrates the comparable biocompatibility of these 3D printed stemmed implants in rabbits up to 12 weeks.


2021 ◽  
Author(s):  
Rafael Coutinho Mello-Machado ◽  
Suelen Cristina Sartoretto ◽  
Jose Mauro Granjeiro ◽  
José Albuquerque Calasans-Maia ◽  
Marcelo Jose Guedes Pinheiro Uzeda ◽  
...  

Abstract This study aimed to investigate in vivo the hypothesis that the osseodensification technique, through a wider osteotomy, produce healing chambers at the implant-bone interface with no impact on primary stability osseointegration in low-density bone. Twenty implants (3.5 x 10 mm) presenting nanohydroxyapatite (nHA) surface were inserted in the ilium of ten sheep, after preparation of a 2.7-mm wide implant bed with conventional subtractive drilling (SCD) or a 3.8-mm wide implant bed with an osseodensification bur system (OBS) (n = 5/group/period). The final insertion torque (IT) and implant stability quotient (ISQ) evaluated the primary implant stability. After 14 and 28 days, the bone samples containing the implants were processed for histological and histomorphometric evaluation of bone implant contact (BIC) and bone area fraction occupancy (BAFO). No significant differences occurred between the implant bed preparations regarding IT and ISQ (P > 0.05). Histological analysis showed bone remodeling, and bone growth in all samples with no inflammatory infiltrate. BIC values were higher for SCD after 14 and 28 days (p < 0.05), however BAFO values were similar on both groups (p > 0.05). It was possible to conclude that the osseodensification technique allowed a wider implant bed preparation with no prejudice on primary stability and bone remodeling.


2000 ◽  
Vol 124 (9) ◽  
pp. 1275-1281
Author(s):  
Mahmoud Melling ◽  
Daniela Karimian-Teherani ◽  
Sascha Mostler ◽  
Mark Behnam ◽  
Grazyna Sobal ◽  
...  

Abstract Background.—The major biochemical characteristic of Dupuytren disease is the progressive and irreversible deposition of excess fibrous collagen characterized by an enhanced type III collagen proportion. Objective.—To investigate the influence of changes of the collagen spectrum on the biophysical properties of the palmar aponeurosis. Design.—Variably affected palmar regions from 30 individuals with Dupuytren disease were classified according to histologic test results and clinical stage. Biochemical, biomechanical, and thermal contracture studies were performed. Results.—The relative type III collagen content increased with increasing tissue involvement and was found to correlate with calorimetric and biomechanical properties with the exception of the Young modulus. In experiments on the thermal isometric contracture, the collagen denaturation temperature decreased with increasing type III collagen content, ie, increasing involvement. To study the dependence of biophysical properties from the collagen type distribution independent of structural changes, as seen in Dupuytren disease, we investigated rat skins from animals of an age range characterized by dramatic changes in type III collagen content (0–18 months). Biomechanical data also correlated significantly with type III collagen content in rat skin with the exception of the time constant of stress relaxation. Conclusion.—In light of these results, we suggest that structural changes, such as reduced collagen fibril diameters, associated with alterations in the type III collagen proportion may influence biophysical properties of connective tissues in the involved palmar aponeurosis in addition to alterations of the cross-linking pattern.


Sign in / Sign up

Export Citation Format

Share Document