Performance Emission and Combustion Characteristics of Diesel Engine Fuelled With Biodiesel–Diesel–Diethyl Ether Blends

Author(s):  
R. Anand ◽  
G. R. Kannan ◽  
P. Karthikeyan

Increasing energy demand and rapid depletion of fossil fuels has accelerated the search for an alternative fuel for diesel engine. Biodiesel produced from waste cooking oil is the most suitable alternative for diesel due to low production cost. Higher viscosity, pour and cloud point of biodiesel causes several engine operating problems such as injector choking, piston ring sticking and unfavorable pumping and spray characteristics. In order to avoid the problem associated with biodiesel various combinations of biodiesel-diesel-diethyl ether were prepared in this present investigation. Based on the stability and fuel properties close to diesel the combination namely B70D20DEE10 (biodiesel 70%, diesel 20% and diethyl ether 10%) was further selected for experimental investigation. Experiments were performed on a single cylinder direct injection water cooled diesel engine under varying load, injection timing and injection pressure while keeping engine speed constant of 1500 rpm. The highest brake thermal efficiency was reported for B70D20DEE10 at an injection timing of 25.5 bTDC and injection pressure of 260 bar at full load condition which is 5.6% higher than diesel. The highest heat release rate (HRR) was observed at above operating condition is 29.4 MJ/°CA, which is 5.3% higher than diesel. Further a slight reduction in unburnt hydrocarbon (UBHC) by 12 ppm, nitric oxide by 116 ppm and smoke opacity by 18% was observed when compared to diesel.

Author(s):  
Sukhbir Singh Khaira ◽  
Amandeep Singh ◽  
Marcis Jansons

Acoustic noise emitted by a diesel engine generally exceeds that produced by its spark-ignited equivalent and may hinder the acceptance of this more efficient engine type in the passenger car market (1). This work characterizes the combustion noise from a single-cylinder direct-injection diesel engine and examines the degree to which it may be minimized by optimal choice of injection parameters. The relative contribution of motoring, combustion and resonance components to overall engine noise are determined by decomposition of in-cylinder pressure traces over a range of load, injection pressure and start of injection. The frequency spectra of microphone signals recorded external to the engine are correlated with those of in-cylinder pressure traces. Short Time Fourier Transformation (STFT) is applied to cylinder pressure traces to reveal the occurrence of motoring, combustion noise and resonance in the frequency domain over the course of the engine cycle. Loudness is found to increase with enhanced resonance, in proportion to the rate of cylinder pressure rise and under conditions of high injection pressure, load and advanced injection timing.


1999 ◽  
Vol 123 (1) ◽  
pp. 167-174 ◽  
Author(s):  
P. J. Tennison ◽  
R. Reitz

An investigation of the effect of injection parameters on emissions and performance in an automotive diesel engine was conducted. A high-pressure common-rail injection system was used with a dual-guided valve covered orifice nozzle tip. The engine was a four-valve single cylinder high-speed direct-injection diesel engine with a displacement of approximately 12 liter and simulated turbocharging. The engine experiments were conducted at full load and 1004 and 1757 rev/min, and the effects of injection pressure, multiple injections (single vs pilot with main), and pilot injection timing on emissions and performance were studied. Increasing the injection pressure from 600 to 800 bar reduced the smoke emissions by over 50 percent at retarded injection timings with no penalty in oxides of nitrogen NOx or brake specific fuel consumption (BSFC). Pilot injection cases exhibited slightly higher smoke levels than single injection cases but had similar NOx levels, while the single injection cases exhibited slightly better BSFC. The start-of-injection (SOI) of the pilot was varied while holding the main SOI constant and the effect on emissions was found to be small compared to changes resulting from varying the main injection timing. Interestingly, the point of autoignition of the pilot was found to occur at a nearly constant crank angle regardless of pilot injection timing (for early injection timings) indicating that the ignition delay of the pilot is a chemical delay and not a physical (mixing) one. As the pilot timing was advanced the mixture became overmixed, and an increase of over 50 percent in the unburned hydrocarbon emissions was observed at the most advanced pilot injection timing.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
S.V. Khandal ◽  
T.M. Yunus Khan ◽  
Sarfaraz Kamangar ◽  
Maughal Ahmed Ali Baig ◽  
Salman Ahmed N J

PurposeThe different performance tests were conducted on diesel engine compression ignition (CI) mode and CRDi engine.Design/methodology/approachThe CI engine was suitably modified to CRDi engine with Toroidal re-entrant combustion chamber (TRCC) and was run in dual-fuel (DF) mode. Hydrogen (H2) was supplied at different flow rates during the suction stroke, and 0.22 Kg/h of hydrogen fuel flow rate (HFFR) was found to be optimum. Diesel and biodiesel were used as pilot fuels. The CRDi engine with DF mode was run at various injection pressures, and 900 bar was found to be optimum injection pressure (IP) with 10o before top dead center (bTDC) as fuel injection timing (IT).FindingsThese operating engine conditions increased formation of oxides of nitrogen (NOx), which were reduced by exhaust gas recycle (EGR). With EGR of 15%, CRDi engine resulted in 12.6% lower brake thermal efficiency (BTE), 5.5% lower hydrocarbon (HC), 7.7% lower carbon monoxide (CO), 26% lower NOx at 80% load as compared to the unmodified diesel engine (CI mode).Originality/valueThe current research is an effort to study and evaluate the performance of CRDi engine in DF mode with diesel-H2 and BCPO-H2 fuel combinations with TRCC.


Author(s):  
Tadanori Yanai ◽  
Xiaoye Han ◽  
Graham T. Reader ◽  
Ming Zheng ◽  
Jimi Tjong

The characteristics of combustion, emissions, and thermal efficiency of a diesel engine with direct injection neat n-butanol were investigated. Tests were conducted on a single cylinder water-cooled four stroke direct injection diesel engine. The engine ran at a load of 6.5 ∼ 8.0 bar IMEP at 1500 rpm engine speed and the injection pressure was controlled to 900 bar. The intake boost pressure, injection timing and EGR rate were adjusted to investigate the engine performance. The test results showed that significantly longer ignition delays were possible when using butanol compared to diesel fuel. Butanol usage generally led to a rapid heat release in a short period, resulting in excessively high pressure rise rate. The pressure rise rate was reduced by retarding the injection timing. The butanol injection timing was limited by misfire and pressure rise rate. Thus, the ignition timing controllable window by injection timing was much narrower than that of diesel. The neat butanol combustion produced near zero soot and very low NOx emissions even at low EGR rate. The tests demonstrated that neat butanol had the potential to achieve ultra-low emissions. However, challenges related to reducing the pressure rise rate and improving the ignition controllability were identified.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Tadanori Yanai ◽  
Xiaoye Han ◽  
Graham T. Reader ◽  
Ming Zheng ◽  
Jimi Tjong

The characteristics of combustion, emissions, and thermal efficiency of a diesel engine with direct injection (DI) neat n-butanol were investigated. The engine ran at a load of 6.5–8.0 bar indicated mean effective pressure (IMEP) at 1500 rpm engine speed and the injection pressure was controlled to 900 bar. The intake boost pressure, injection timing, and EGR rate were adjusted to investigate the engine performance. The tests demonstrated that neat n-butanol had the potential to achieve ultralow emissions. However, challenges related to reducing the pressure rise rate and improving the ignition controllability were identified.


Author(s):  
M. Nandeesh ◽  
R. Harishkumar ◽  
C.R. Rajashekar ◽  
N.R. Banapurmath ◽  
V.S. Yaliwal

The conventional diesel fuels are depleting at a faster pace. To reduce the burden on the economy, the reserves and sources for future has to be limited. The use of biodiesel derivatives from various sources and its blends in diesel engine has gained more importance in recent years. The present work investigates the feasibility of using dairy scum methyl esters (DSOME) of B20 blend in a modified single cylinder of common rail direct injection (CRDI) engine at a constant speed. Experiments were carried out at different injection timings from 25deg BTDC to 5deg ATDC with constant injection pressure as 600 bar. The fuel injection timing plays an important role in evaluating the performance, emission and combustion characteristics of the engine. The results show that the performance is improved with retarded injection timings compared to the operation of single cylinder DI engine fuelled with DSOME B20 biodiesel.


2010 ◽  
Vol 7 (2) ◽  
pp. 399-406 ◽  
Author(s):  
M. Venkatraman ◽  
G. Devaradjane

In the present investigation, tests were carried out to determine engine performance, combustion and emissions of a naturally aspirated direct injection diesel engine fueled with diesel and Jatropha Methyl ester and their blends (JME10, JME20 and JME30). Comparison of performance and emission was done for different values of compression ratio, injection pressure and injection timing to find best possible combination for operating engine with JME. It is found that the combined compression ratio of 19:1, injection pressure of 240 bar and injection timing of 27?bTDC increases the BTHE and reduces BSFC while having lower emissions.From the investigation, it is concluded that the both performance and emissions can considerably improved for Methyl ester of jatropha oil blended fuel JME20 compared to diesel.


Author(s):  
Rishabha Saraf ◽  
Anshul Gangele

Over the past two centuries, energy needs have risen dramatically, particularly due to the transportation and industry sectors. However, the main made fuels like (fossil fuels) are polluting and their reserves are limited. Governments & research organization work together for make the use of renewable resources a priority and reduce irresponsible use of natural supplies through increased conservation. The energy crisis is a broad is biggest problem in world. Most people don't realize to their reality unless the price of fuel at the pump goes up or there are lines at the fuel station. Plastics waste fuel is sustainable and futuristic solution of fossil fuel as well as biggest problem of waste management of plastic waste can solve by this fuel. In thesis we prepare the plastic waste fuel by application of paralysis process in this process use low, medium and high grade of plastic and heated with limited amount of oxygen melt the plastic. The result of paralysis finds of liquid fuel and flammable gas. This fuel can be used as a blend in diesel with a proportion of B0D100, B10D90 B20D80, & B30D70 where B tent to blend of plastic fuel and D tend to diesel as if B0D100 means blend 0% and diesel 100%. These blend run diesel engine. The blends are in 10%, 20% & 30% plastic paralysis oil with standard diesel fuel. For experiment simultaneous optimization used a method called “Taguchi” used in the engine such as injection pressure and load condition. Taguchi Method of Optimization is a simplest method of optimizing experimental parameters in less number of trials.


Sign in / Sign up

Export Citation Format

Share Document