The Research on Performance of Hovercraft Gas Turbine Anti-Icing Device

Author(s):  
Zhongyi Wang ◽  
Fei Li ◽  
Zhengheng Zhao ◽  
Changlong Yuan

An anti-icing device is designed for resisting the ice accretion occurring in the air intake system of hovercraft gas turbine, which may affect its normal operation. The anti-icing purpose was achieved by mixing hot bleed air from the engine compressor and cold intake ambient air. Some research on the bleed air heating system was done by using 3D numerical simulation method. Under the set parameter of bleed air, the ambient temperature range for different bleed air flow was obtained and the corresponding anti-icing effect was also simulated. When the ambient temperature changed, the influence of anti-icing device’s working on total pressure loss of air intake system and the distributing condition of the compressor inlet surface velocity nonuniformity were investigated, and their changing law under different icing condition was obtained. The researching results provide theoretical and practical guidance and support for ships equipped with gas turbine when sailing in low temperature region.

Author(s):  
Devendra Dandotiya ◽  
Nitin D. Banker

The power output of a gas turbine plant decreases with the increase in ambient temperature. Moreover, the ambient temperature fluctuates about 15–20°C in a day. Hence, cooling of intake air makes a noticeable improvement to the gas turbine performance. In this regard, various active cooling techniques such as vapor compression refrigeration, vapor absorption refrigeration, vapor adsorption refrigeration and evaporative cooling are applied for the cooling of intake air. This paper presents a new passive cooling technique where the intake air temperature is reduced by incorporating phase change material (PCM) based heat exchanger parallel to conventional air intake line. During the daytime, the air is passed through the PCM which has melting temperature lower than the peak ambient temperature. This will reduce the ambient air temperature before taking to the compressor. Once the PCM melts completely, the required ambient air would be drawn from the ambient through conventional air intake arrangement. During the night, when there is lower ambient temperature, PCM converts from liquid to solid. The selected PCM has a melting temperature less than the peak ambient temperature and higher than the minimum ambient temperature. It is observed from the numerical modeling of the PCM that about four hours are required for the melting of PCM and within this time, the intake air can also be cooled by 5°C. The thermodynamic analysis of the results showed about 5.2% and 5.2% improvement in net power output and thermal efficiency, respectively for four hours at an ambient temperature of 45°C.


Author(s):  
Duan Liqiang ◽  
Guo Yaofei ◽  
Pan Pan ◽  
Li Yongxia

Abstract The environmental conditions (air temperature and relative humidity) have a great impact on the power and efficiency of gas turbine combined cycle (GTCC) system. Using the intake air cooling technology can greatly improve the performance of GTCC system. On the base of the PG9351FA gas turbine combined cycle system, this article builds the models of both the GTCC system and a typical lithium bromide absorption refrigeration system using Aspen Plus software. The effects of compressor inlet air cooling with different environmental conditions on the GTCC system performance are studied. The research results show that using the inlet air cooling technology can obviously increase the output powers of both the gas turbine and the combined cycle power. When the ambient humidity is low, the efficiency of GTCC changes gently; while the ambient humidity is high, the GTCC system efficiency will decline substantially when water in the air is condensed and removed with the progress of cooling process. At the same ambient temperature, when the relative humidity of the environment is equal to 20%, the gas turbine output power is increased by 35.64 MW, with an increase of 16.32%, and the combined cycle output power is increased by 39.57 MW, with an increase of 11.34%. At an ambient temperature of 35°C, for every 2.5 °C drop in the compressor inlet air, the thermal efficiency of the gas turbine increases by 0.189% compared to before cooling.


Author(s):  
Alan Hashem ◽  
Dani Fadda ◽  
Kenneth J. Fewel

An advanced three stage filtration/separation air intake system (Compact II) is introduced in this paper. The system was developed to meet the current and expected future market demands for gas turbine combustion air treatment in a marine environment. Developing and testing of the Compact II are subjects of this paper.


Author(s):  
Roger Yee ◽  
Alan Oswald

A new generation of auxiliary ships to enter the U.S. Navy (USN) fleet is the AOE-6 SUPPLY CLASS. These fast combat support ships conduct operations at sea as part of a Carrier Battle group to provide oil, aviation fuel, and ammunition to the carrier and her escorts. The SUPPLY CLASS is the first ship in the entire USN fleet to use a combined gas turbine and diesel generator cooling air intake system to cool its respective engine modules. The cooling air intake was designed this way to save on costs. As the ships in this class continued with operations and problems of insufficient supply of cooling air for the gas turbines modules started surfacing, the entire intake system required investigation and analysis. Since the gas turbines and diesel generators share a common cooling air trunk, they were competing for air. This paper will outline the tests that were performed to determine the problems, the recommended solutions, and the lessons learned from the investigations.


Author(s):  
V. L. Blinov ◽  
I. S. Zubkov ◽  
Yu. M. Brodov ◽  
B. E. Murmanskij

THE PURPOSE. To study the issues of air intake system’s performance as the part of the gas turbines. To estimate the possibility of modeling different performance factors of air intake systems with numerical simulation methods. To develop the recommendations of setting up the grid and the numerical models for researches in air intake system’s performance and assessing the technical condition of elements of it. METHODS. The main method, which was used during the whole study, is computational fluid dynamics with usage of CAE-systems.RESULTS. During the study the recommendations for setting up the numerical model were developed. Such factors as grid model parameters, roughness scale, pressure drop in elements of air intake system and some more were investigated. The method for heat exchanger’s performance simulation were created for modeling the air temperature raising. CONCLUSION. The air intake system’s performance analysis becomes one of the actual topics for research because of the high demands of gas turbines to air, which is used in its annulus. The main part of these researches is in analysis of dangerous regimes of work (e.g. the icing process of annulus elements) or in assessing technical condition of air intake systems and its influence to the gas turbine as a whole. The developed method of numerical simulation allows to get the adequate results with low requirements for computational resources. Also this method allows to model the heat exchanger performance and study its defects’ influence to the performance of air intake system as a whole. 


2020 ◽  
Vol 2020 (4) ◽  
pp. 65-71
Author(s):  
Yu.A. Kvasha ◽  

This work is devoted to the development of approaches to the numerical simulation of 3D turbulent gas flows in different ducts of aircraft gas turbine engines, in particular in inlet device ducts. Inlet devices must provide large values of the total pressure recovery factor and flow uniformity at the engine compressor inlet. The aim of this work is the verification of the operability of a technique developed earlier for the calculation of the parameters of a 3D turbulent flow in complex-shape ducts. The basic approach is a numerical simulation of 3D turbulent gas flows on the basis of the complete averaged Navier¬–Stokes equations and a two-parameter turbulence model. The proposed technique of numerical simulation of a 3D gas flow was tested by calculating a 3D laminar flow in a square pipe bent at a right angle. The calculated flow pattern is in satisfactory agreement with the experimental data on the flow structure in a pipe elbow reported in the literature. Based on a numerical simulation of a 3D turbulent flow in the air duct of one of the air intake configurations for an aircraft turboprop engine, the efficiency of that configuration is assessed. The calculated flow parameter nonuniformity at the air intake outlet, i. e., at the compressor inlet, is compared with that obtained earlier for another air intake configuration for the same engine. It is pointed out that the air intake configuration considered earlier provides a much more uniform flow parameter distribution at the engine compressor inlet. On the whole, this work shows that the quality of subsonic air intakes for aircraft gas turbine engines can be assessed using the proposed numerical technique of 3D gas flow simulation. The results obtained may be used in the aerodynamic improvement of inlet devices for aircraft engines of different types.


2019 ◽  
Vol 17 (3) ◽  
Author(s):  
Putri Sundari ◽  
Bayu Rudiyanto ◽  
Budi Hariyono

This research discusses an energy and exergy analysis of a 112,45 MW gas turbine power generation system. The exergy of a material stream is divided into physical and chemical exergyand evaluated on each state. The results of this study reveal that the highest exergy destruction occurs in combustion chamber (65,81%), where the large temperature difference is the major source of the irreversibility. The exergy destruction in turbine gas and compressor was found 26,62% and 7,57% respectively. The effect of various gas turbine load and ambient temperature to the system’s performance were also studied. The result shows that increasing gas turbine loadgives positif effecton the exergy efficiency of the cycle as well as the components compressor and combustion chamber. Increasing ambient temperature givesnegatif effect, bywhich exergy efficiency of cycle was decreasing. Accordingly, cooling of the compressor inlet air is considered as the solution to this problem.Penelitian ini membahas analisis energi dan eksergi pada sistem pembangkit listrik tenaga gas berkapasitas 112,45 MW. Laju aliran eksergi dibagi menjadi dua komponen yaitu eksergi fisik dan eksergi kimia yang dievaluasi pada masing-masing keadaan. Hasil dari penelitian ini menunjukkan bahwa pemusnahan eksergi terbesar terjadi di ruang bakar (68,61%), dimana perbedaan temperatur yang besar merupakan sumber utama terjadinya irreversibilitas. Sedangkan pemusnahan eksergi pada turbin gas dan kompresor masing- masing sebesar 26,62% dan 7,57%. Pada penelitian ini juga membahas pengaruh dari tingkat pembebanan dan suhu udara lingkungan untuk mengetahui perubahan performa yang dihasilkan. Hasil dari variasi pembebanan menunjukkan bahwa peningkatan beban turbin gas berpengaruh positif terhadap efisiensi siklus maupun komponennya, yaitu kompresor dan ruang bakar. Peningkatan suhu udara lingkungan berdampak sebaliknya, dimana efisiensi siklus mengalami penurunan pada suhu udara lingkungan yang lebih tinggi. Sehingga untuk mengendalikan faktor tersebut dapat dilakukan dengan pendinginan suhu udara masuk kompresor.Keywords: energy, exergy, exergy efficiency, Gas Turbine Power Plant.


Author(s):  
Yunfeng Jin ◽  
Chao Liu ◽  
Xin Tian ◽  
Haizhou Huang ◽  
Gaofeng Deng ◽  
...  

Due to the complex and harsh environmental factors, the useful life of the filter in the gas turbine air intake system is usually less than its design life. When the filter is seriously degraded, the power and thermal efficiency of the gas turbine will decrease obviously due to the increase of inlet pressure loss. For evaluating the health condition of filters in the air intake system, this work forms a filter pressure loss model with the defined health index for the filter and five external environmental and control factors. By integrating the gas path component model, the combined model is applied in a real data set and the results show that (i) the proposed health index is efficient in representing the degradation state of the filter, (ii) the influencing factors on the pressure loss are successfully decoupled and their contributions on the pressure are quantitatively estimated, and (iii) the integrated model of filter pressure loss and gas path component can be used to better estimate the deterioration states of the filter as well as the gas turbine performance.


Author(s):  
Farshid Zabihian ◽  
Alan S. Fung ◽  
Fabio Schuler

Gas turbine-based power plants are very sensitive to ambient conditions and their output power and efficiency can be decreased significantly with increase in the ambient temperature. Various compressor inlet air cooling systems have been proposed and utilized to reduce inlet air temperature to the system, including evaporative systems e.g. media and fogging, and mechanical cooling systems. In this work, different techniques for compressor inlet air cooling are briefly reviewed. Then, the fogging system employed in the Whitby cogeneration power plant is explained with particular attention to the location of the system installation. A model of the gas turbine-based cogeneration plant is also developed to simulate the Whitby cogeneration power plant. The effects of fogging compressor inlet air cooling system on the performance of the plant are investigated. The results indicate that at an ambient temperature of 30°C and relative humidity of 40% the inlet cooling of as high as 8.4°C is possible which can increase output power to more than 50 MW. Also, it is found that the model can predict the gas turbine exhaust temperature and the plant’s power production with the error level of lower than 0.5% and 3%, respectively.


Author(s):  
Andrew Banta

An experimental study of gas turbine inlet air cooling was conducted in the Cogeneration Laboratory at California State University, Sacramento (CSUS). The cooling was done using both water sprays and air cooled by an absorption chiller. The primary objectives were to determine the effectiveness of inlet air cooling on a very small gas turbine and compare using water sprays with absorption cooled air. Secondary objectives were to investigate the use of low cost water spray equipment which is typically used in green houses, and the cost effectiveness of absorption cooling with a small turbine. The very small quantities of water, less than 0.006 L/s (0.1 gpm), required to saturate the turbine air flow was difficult to meter. With the low cost spray equipment employed, the only way to accomplish full saturation was to over saturate the air. The gas turbine engine did not respond well to this situation. The lower density of the inlet air caused unstable operation of the compressor resulting in reduced compressor efficiency. With about 2/3 of the turbine work going to the compressor, this loss in efficiency caused the electricity generated to be limited to about half the rated 75 kW. Concerns about damage to the engine caused early termination of these tests. The experiments using air cooled by absorption chilling were more successful but encountered some of the same difficulties. Again, the high humidity and lower density of the inlet air appeared to cause some instability in the compressor. Control of the air temperature proved to be difficult; thus the compressor inlet air was at the chiller discharge temperature, approximately 13 C (55 F). With this arrangement it was possible to operate the engine at full rated capacity which is substantially higher than the 60% fo full load possible with ambient air at approximately 32 C (90 F). In the case of this particular engine, it was concluded that the use of water sprays was not practical and in fact may cause damage. The difficulties of metering very small water quantities would be encountered with any similar size engine. The use of absorption cooling did improve performance but this is a costly solution. The economics of inlet cooling of micro-turbines is very questionable.


Sign in / Sign up

Export Citation Format

Share Document