Characterization of Bulk and Thin Film Fracture in Electronic Packaging

Author(s):  
Vijay Subramanian ◽  
Tsgereda Alazar ◽  
Kyle Yazzie ◽  
Bharat Penmecha ◽  
Pilin Liu ◽  
...  

As semiconductor packaging technologies continues to scale, it drives the use of existing and new materials in thin layer form factors. Additionally, packaging technologies continue to increase in complexity such as multi-chip packages, 3D packaging, embedded dies/passives, and system in package. This increasing packaging complexity implies that materials in thin layers are subject to non-trivial loading conditions, which may exceed the toughness of the material, leading to cracks. Furthermore, the continued focus on cost leads to a growing interest in novel, low-cost materials. It is important to ensure that the reliability of these low-cost materials is at par or better than currently used materials. This in turn, leads to significant efforts in the area of material characterization at the lab level to speed up the development process. The chosen test methods must not only provide accurate and consistent data, but they must also be applicable across a suitably wide range of materials to aid in the optimization process. Methods for testing and characterizing fracture induced failures in various material systems in electronic packaging are investigated in this paper. The learnings from the different tests methods are compared and discussed here. More specifically, different fracture characterization techniques on (a) freestanding ‘thin’ solder resist films, and (b) filled ‘bulk’ epoxy materials like underfills and epoxy mold compounds are investigated. For thin films, learnings from different test methods for measuring fracture toughness, namely, uniaxial tension (with and without an edge pre-crack) and membrane penetration tests, are discussed. The test methods are compared by characterizing several different thin films, to gauge how well each method could distinguish differences in material (and thickness). Reasonably good agreement was found between the various thin film toughness test methods; however, ease of sample preparation, fixture, and adaptability to environmental testing will be discussed. In the case of filled epoxy resin systems, the single-edge-notch bending (SENB) technique is utilized to obtain the fracture toughness of underfills and mold compounds with filler materials. Learnings on different methods of creating pre-cracks in SENB samples are also investigated and presented. Two methods are explored in this study, namely, razor blade and laser milling. Good agreement in fracture toughness values was obtained with the two precracking methods, along with considerations about ease of sample preparation and consistency of pre-crack dimensions also examined. Morphology of the pre-cracks obtained by these methods, and their effects on fracture toughness measurements, are also discussed.

2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Vijay Subramanian ◽  
Kyle Yazzie ◽  
Tsgereda Alazar ◽  
Bharat Penmecha ◽  
Pilin Liu ◽  
...  

As semiconductor packaging technologies continue to scale, it drives the use of existing and new materials in thin layer form factors. Increasing packaging complexity implies that materials in thin layers are subject to nontrivial loading conditions, which may exceed the toughness of the material, leading to cracks. It is important to ensure that the reliability of these low-cost materials is at par or better than currently used materials. This in turn leads to significant efforts in the area of material characterization at the lab level to speed up the development process. Methods for testing and characterizing fracture-induced failures in various material systems in electronic packaging are investigated in this paper. The learnings from different test methods are compared and discussed here. More specifically, different fracture characterization techniques on (a) freestanding “thin” solder-resist films and (b) filled “bulk” epoxy materials such as underfills and epoxy mold compounds are investigated. For thin films, learnings from different test methods for measuring fracture toughness, namely, uniaxial tension (with and without an edge precrack) and membrane penetration tests, are discussed. Reasonably good agreement is found between the various thin film toughness test methods; however, ease of sample preparation, fixture, and adaptability to environmental testing will be discussed. In the case of filled epoxy resin systems, the single-edge-notched bending (SENB) technique is utilized to obtain the fracture toughness of underfills and mold compounds with filler materials. Learnings on different methods of creating precracks in SENB samples are also investigated and presented.


2010 ◽  
Vol 636-637 ◽  
pp. 1065-1072 ◽  
Author(s):  
Lilian Marques Silva ◽  
Roberto R. Lima ◽  
E.R. Fachini ◽  
E.W. Simões ◽  
E. Pecoraro ◽  
...  

The aim of this work was the production of a large surface area of hexamethyldisilazane (HMDS) plasma-deposited thin films and their applicability in a miniaturized structure useful for preliminary analysis of organic mixtures. The HMDS plasma films were produced with different surface areas and morphologies, and all films adsorbed polar and non-polar organic compounds. A low cost miniaturized structure was manufactured in glass using a Milling cutter and covered with HMDS plasma films. Good agreement was observed between simulation and experimental results on those microstructures. The observed different performance between pure and mixtures of organic compound samples suggests that the proposed system is a simple setup that could be useful for rough analysis of a fuel.


2020 ◽  
Vol 21 (4) ◽  
pp. 660-668
Author(s):  
Z. R. Zapukhlyak ◽  
L.I. Nykyruy ◽  
G. Wisz ◽  
V.M. Rubish ◽  
V.V. Prokopiv ◽  
...  

The authors have developed a simple, cheap and reproducible technology for obtaining thin-film heterostructures based on CdTe with a given surface morphology during vacuum deposition, which contributes to their low cost [1, 2]. The critical dimensions (thicknesses) of individual layers of the heterostructure were substantiated, a simulation was performed and a wide range of optical properties was investigated [3]. It is shown that for the deposited CdS / CdTe heterostructure on glass it is possible to obtain an efficiency of 15.8%. Given that thin films are relatively new systems, their study can offer much wider opportunities for technological improvement of photovoltaic energy converters. According to the analysis of modern literature data, the efficiency can be increased by performing deposition on ITO films and introducing nanoparticles of controlled sizes.


Author(s):  
Jianwen Liu ◽  
Wangping Wu ◽  
Xiang Wang

Developing novel hydrogen evolution reaction (HER) catalysts with high activity, high stability and low cost is of great importance for the applications of hydrogen energy. In this work, iridium-nickel (Ir-Ni) thin films were electrodeposited on a copper foam as electrocatalyst for HER, and electrodeposition mechanism of Ir-Ni film was studied. The morphology and chemical composition of thin films were determined by scanning electron microscopy and energy-dispersive spectroscopy, respectively. The electrocatalytic performances of the films were estimated by linear sweep voltammograms, electrochemical impedance spectroscopy and cyclic voltammetry. The results show that Ir-Ni thin films were attached to the substrate of porous structure and hollow topography. The deposition of Ni was preferable in the electrolyte without the addition of additives, and Ir-Ni thin film was alloyed, resulting in high deposition rate for Ir42Ni58 thin film, and subsequently an increase of Ir content in the thin films of Ir80Ni20 and Ir88Ni12. Ir-Ni thin films with Tafel slopes of 40-49 mV·dec-1 exhibited highly efficient electrocatalytic activity for HER. The electrocatalytic activity of Ir-Ni thin films showed a loading dependence. As the solution temperature raised from 20 oC to 60 oC, the hydrogen evolution performance of Ir-Ni thin films improved. The apparent activation energy value of Ir88Ni12 film was 7.1 kJ·mol-1. Long-term hydrogen evolution tests exhibited excellent electrocatalystic stability in alkaline solution.


Author(s):  
Dinesh Pathak ◽  
Sanjay Kumar ◽  
Sonali Andotra ◽  
Jibin Thomas ◽  
Navneet Kaur ◽  
...  

In this study, we have investigated new tailored organic semiconductors materials for the optoelectronic application, such as organic solar cells. The carbon-based organic semiconductor material has promising advantages in organic thin-film form. Moreover, due to its low cost, organic thin-films are suitable and cheaper than inorganic thin-film. The band gap of organic semiconductors materials can be tuned and mostly lies between 2.0eV to 4eV and the optical absorption edge of organic semiconductors typically lies in between 1.7eV to 3eV. They can be easily tailored by modifying the carbon chain and legends and looks promising for engineering the band gap to harness solar spectrum. In this work, with new tailored organic semiconductors the solution route is explored which is low cost processing method. (Anthracen-9-yl) methylene naphthalene-1-amine, 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one and N-(anthracen-9-ylmethyl)-3,4-dimethoxyaniline thin-films are processed by spin coating method with changing concentration such as 0.05 wt% and 0.08 wt%. Thin films of Organic semiconductors were prepared on glass substrate and annealed at 55°C. The structural and optical behaviour of (Anthracen-9-yl) methylene naphthalene-1-amine, 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one and N-(anthracen-9-ylmethyl)-3,4-dimethoxyaniline organic semiconductors thin films is studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and UV-Visible Spectroscopy technique. The XRD data of synthesized sample suggests the Nano crystallinity of the Organic layers. The SEM micrographs shows the dense packing when we increase the wt% 0.05 to 0.08. Analysis of the optical absorption measurements found that the engineered band gap of synthesized thin films are 2.18eV, 2.35eV, 2.36eV, 2.52eV and 2.65eV which suggest suitability for applications of Optoelectronic devices such as solar cell. Such light weight, eco-friendly and disposable new carbon based materials seems to have potential to replace other traditional hazardous heavy materials for future eco-friendly flat fast electronics. Keywords: Thin-film, solar cell, tailored organic semiconductors, XRD, SEM, UV-Vis spectroscopy.


2020 ◽  
Vol 230 ◽  
pp. 00006
Author(s):  
Paola Lova ◽  
Paolo Giusto ◽  
Francesco Di Stasio ◽  
Giovanni Manfredi ◽  
Giuseppe M. Paternò ◽  
...  

Thanks to versatile optoelectronic properties solution processable perovskites have attracted increasing interest as active materials in photovoltaic and light emitting devices. However, the deposition of perovskite thin films necessitates wide range solvents that are incompatible with many other solution-processable media, including polymers that are usually dissolved by the perovskite solvents. In this work, we demonstrate that hybrid perovskite thin films can be coupled with all polymer planar photonic crystals with different approaches to achieve emission intensity enhancement and reshaping using different approaches. The possibility to control and modify the emission spectrum of a solution processable perovskite via a simple spun-cast polymer structure is indeed of great interest in optoelectronic applications requiring high color purity or emission directionality. Furthermore, thanks to the ease of fabrication and scalability of solution-processed photonic crystals, this approach could enable industrial scale production of low-cost, large area, lightweight and flexible polymer-perovskite lighting devices, which may be tuned without resorting to compositional engineering.


2020 ◽  
Vol 2 (1) ◽  
pp. 368-376 ◽  
Author(s):  
Nan Chen ◽  
Michael R. Scimeca ◽  
Shlok J. Paul ◽  
Shihab B. Hafiz ◽  
Ze Yang ◽  
...  

A high-performance n-type thermoelectric Ag2Se thin film via cation exchange using a low-cost solution processed Cu2Se template.


2019 ◽  
Vol 293 ◽  
pp. 83-95
Author(s):  
Marek Szindler

The use of thin films in optoelectronic and photovoltaic devices is aimed at improving the physical properties of the substrate material. The modification of the surface of the silicon substrate is thus one of the greatest challenges in research on photovoltaic materials, in order to achieve even greater efficiency or better adapt their properties depending on the application. The technologies of applying layers vary depending on the effect to be obtained and the material from which the layer is formed. In practice, the most common method is chemical vapor deposition and physical vapor deposition, and the most commonly applied optical materials are SiO2, TiO2 and Si3N4.This paper presents the results of investigations on morphology and optical properties of the prepared aluminium oxide thin films. Thin films were prepared with use of sol-gel spin coating method. Surface morphology studies were carried out using an atomic force microscope. To characterize the surface of the thin films, 3D images and histograms of the frequency of individual inequalities were made. In order to characterize the optical properties of Al2O3 thin films, the reflectance and light transmission tests were performed using a spectrophotometer. Optical constants were determined using a spectroscopic ellipsometer. Results and their analysis show that the sol-gel method allows the deposition of homogenous thin films of Al2O3 with the desired geometric characteristics and good optical properties. Uniform, continuous thin layers with a roughness not exceeding a few nanometres were deposited. Their deposition enabled to reduce the reflection of light from the polished substrate below 15% in a wide range (425-800nm) while maintaining high transparencies (over 90%). The obtained results causes that mentioned thin films are good potential material for optics, optoelectronics and photovoltaics.


2002 ◽  
Vol 16 (03) ◽  
pp. 473-480 ◽  
Author(s):  
JULIA M. WESSELINOWA ◽  
STEFFEN TRIMPER

Based on an Ising model in a transverse field (TIM) and using a Green's function formalism the critical exponents of the polarization β and of the longitudinal susceptibility γ are calculated for a ferroelectric thin film consisting of N layers. The exponents depends on the number of layers in a significant manner. Whereas for N=3 layers the exponents are β=0.131 and γ=1.739 there is a change over to β=0.315 and γ=1.239 in case of N=30. The datas are in a good agreement with predictions for 2D and 3D Ising systems. Using scaling laws other exponents like α, δ, η and ν are obtained, too.


Sign in / Sign up

Export Citation Format

Share Document