Identification of the Mechanical Characteristics of 3D Printed NinjaFlex®

Author(s):  
Patrick Messimer ◽  
Brendan O’Toole ◽  
Mohamed Trabia

Abstract NinjaFlex is a flexible thermoplastic polyurethane (TPU) material manufactured for use with Fused Deposition Modelling 3D printers. It is widely available, relatively inexpensive, and is useful in various applications including gaskets, wearable electronics, and customized prosthetics because of its great flexibility and strength. The objective of this research was to expand on the limited information available regarding the mechanical characteristics of NinjaFlex and learn how infill density and printing orientation influence those characteristics. An experiment was designed using the ASTM D638-14 standard to evaluate tensile properties of NinjaFlex specimens printed in two different orientations with their longitudinal axis parallel to the printing surface and with their longitudinal axis normal to the printing surface. Four different infill densities were used. Specimens were subjected to tensile loading along their longitudinal axes. A calibrated load cell measured applied force while a camera filmed the experiment for determining the corresponding extension using computer vision methods. The results show that NinjaFlex has sizably greater ultimate strength, elongation, and toughness when loaded parallel to its print layers then when loaded normal to its print layers. The effects of infill density on tensile properties vary depending on loading direction relative to the print layer direction.

2014 ◽  
Vol 1044-1045 ◽  
pp. 31-34 ◽  
Author(s):  
Mst Faujiya Afrose ◽  
S.H. Masood ◽  
Mostafa Nikzad ◽  
Pio Iovenitti

Fused Deposition Modelling (FDM) of thermoplastic materials is generally a well-known technology among all additive manufacturing (AM) technologies and therefore, it is essential to investigate the mechanical properties of such FDM processed materials. Several open-source and low cost AM machines, known as 3D Printers, have recently been developed using thermoplastic extrusion process based on the original FDM technology. Many of these 3D Printers use Polylactic Acid (PLA) plastic for building parts. The main objective of this paper is to investigate the tensile properties of the PLA thermoplastic material processed by the Cube-2 3D Printer. In this study, the dog-bone sized PLA specimens are printed in different build orientations and a Zwick Z010 tensile testing machine is used to determine the tensile properties of PLA in different build orientation.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 63 ◽  
Author(s):  
Juan Domínguez-Robles ◽  
Caterina Mancinelli ◽  
Elena Mancuso ◽  
Inmaculada García-Romero ◽  
Brendan F. Gilmore ◽  
...  

Current strategies to treat pelvic organ prolapse (POP) or stress urinary incontinence (SUI), include the surgical implantation of vaginal meshes. Recently, there have been multiple reports of issues generated by these meshes conventionally made of poly(propylene). This material is not the ideal candidate, due to its mechanical properties leading to complications such as chronic pain and infection. In the present manuscript, we propose the use of an alternative material, thermoplastic polyurethane (TPU), loaded with an antibiotic in combination with fused deposition modelling (FDM) to prepare safer vaginal meshes. For this purpose, TPU filaments containing levofloxacin (LFX) in various concentrations (e.g., 0.25%, 0.5%, and 1%) were produced by extrusion. These filaments were used to 3D print vaginal meshes. The printed meshes were fully characterized through different tests/analyses such as fracture force studies, attenuated total reflection-Fourier transform infrared, thermal analysis, scanning electron microscopy, X-ray microcomputed tomography (μCT), release studies and microbiology testing. The results showed that LFX was uniformly distributed within the TPU matrix, regardless the concentration loaded. The mechanical properties showed that poly(propylene) (PP) is a tougher material with a lower elasticity than TPU, which seemed to be a more suitable material due to its elasticity. In addition, the printed meshes showed a significant bacteriostatic activity on both Staphylococcus aureus and Escherichia coli cultures, minimising the risk of infection after implanting them. Therefore, the incorporation of LFX to the TPU matrix can be used to prepare anti-infective vaginal meshes with enhanced mechanical properties compared with current PP vaginal meshes.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2497 ◽  
Author(s):  
Yao Li ◽  
Yan Lou

Compared with laser-based 3D printing, fused deposition modelling (FDM) 3D printing technology is simple and safe to operate and has a low cost and high material utilization rate; thus, it is widely used. In order to promote the application of FDM 3D printing, poly-ether-ether-ketone (PEEK) was used as a printing material to explore the effect of multi-factor coupling such as different printing temperatures, printing directions, printing paths, and layer thicknesses on the tensile strength, bending strength, crystallinity, and grain size of FDM printed PEEK parts. The aim was to improve the mechanical properties of the 3D printed PEEK parts and achieve the same performance as the injection molded counterparts. The results show that when the thickness of the printed layer is 0.1 mm and the printing path is 180° horizontally at 525 °C, the tensile strength of the sample reaches 87.34 MPa, and the elongation reaches 38%, which basically exceeds the tensile properties of PEEK printed parts reported in previous studies and is consistent with the tensile properties of PEEK injection molded parts. When the thickness of the printed layer is 0.3 mm, the printing path is 45°, and with vertical printing direction at a printing temperature of 525 °C, the bending strength of the sample reaches 159.2 MPa, which exceeds the bending performance of injection molded parts by 20%. It was also found that the greater the tensile strength of the printed specimen, the more uniform the size of each grain, and the higher the crystallinity of the material. The highest crystallinity exceeded 30%, which reached the crystallinity of injection molded parts.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4632
Author(s):  
Marta Dobrosielska ◽  
Robert Przekop ◽  
Bogna Sztorch ◽  
Dariusz Brząkalski ◽  
Izabela Zgłobicka ◽  
...  

New composites containing a natural filler made of diatom shells (frustules), permitting the modification of polylactide matrix, were produced by Fused Deposition Modelling (3D printing) and were thoroughly examined. Two mesh fractions of the filler were used, one of <40 µm and the other of 40−63 µm, in order to check the effect of the filler particle size on the composite properties. The composites obtained contained diatom shells in the concentrations from 0% to 5% wt. (0−27.5% vol.) and were subjected to rheological analysis. The composites obtained as filaments of 1.75 mm in diameter were used for 3D printing. The printed samples were characterized as to hydrophilic–hydrophobic, thermal and mechanical properties. The functional parameters of the printed objects, e.g., mechanical characteristics, stability on contact with water and water contact angle, were measured. The results revealed differences in the processing behavior of the samples as well as the effect of secondary granulation of the filler on the parameters of the printing and mechanical properties of the composites.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 190
Author(s):  
Nur’ain Wahidah Ya Omar ◽  
Norshah Aizat Shuaib ◽  
Mohd Haidiezul Jamal Ab Hadi ◽  
Azwan Iskandar Azmi ◽  
Muhamad Nur Misbah

Carbon-fiber-reinforced plastic materials have attracted several applications, including the fused deposition modelling (FDM) process. As a cheaper and more environmentally friendly alternative to its virgin counterpart, the use of milled recycled carbon fiber (rCF) has received much attention. The quality of the feed filament is important to avoid filament breakage and clogged nozzles during the FDM printing process. However, information about the effect of material parameters on the mechanical and physical properties of short rCF-reinforced FDM filament is still limited. This paper presents the effect of fiber loading (10 wt%, 20 wt%, and 30 wt%) and fiber size (63 µm, 75 µm, and 150 µm) on the filament’s tensile properties, surface roughness, microstructure, porosity level, density, and water absorptivity. The results show that the addition of 63 µm fibers at 10 wt% loading can enhance filament tensile properties with minimal surface roughness and porosity level. The addition of rCF increased the density and reduced the material’s water intake. This study also indicates a clear trade-off between the optimized properties. Hence, it is recommended that the optimization of rCF should consider the final application of the product. The findings of this study provide a new manufacturing strategy in utilizing milled rCF in potential 3D printing-based applications.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 305
Author(s):  
Linda Ritzen ◽  
Vincenzo Montano ◽  
Santiago J. Garcia

The use of self-healing (SH) polymers to make 3D-printed polymeric parts offers the potential to increase the quality of 3D-printed parts and to increase their durability and damage tolerance due to their (on-demand) dynamic nature. Nevertheless, 3D-printing of such dynamic polymers is not a straightforward process due to their polymer architecture and rheological complexity and the limited quantities produced at lab-scale. This limits the exploration of the full potential of self-healing polymers. In this paper, we present the complete process for fused deposition modelling of a room temperature self-healing polyurethane. Starting from the synthesis and polymer slab manufacturing, we processed the polymer into a continuous filament and 3D printed parts. For the characterization of the 3D printed parts, we used a compression cut test, which proved useful when limited amount of material is available. The test was able to quasi-quantitatively assess both bulk and 3D printed samples and their self-healing behavior. The mechanical and healing behavior of the 3D printed self-healing polyurethane was highly similar to that of the bulk SH polymer. This indicates that the self-healing property of the polymer was retained even after multiple processing steps and printing. Compared to a commercial 3D-printing thermoplastic polyurethane, the self-healing polymer displayed a smaller mechanical dependency on the printing conditions with the added value of healing cuts at room temperature.


Author(s):  
Alexander Rompas ◽  
Charalampos Tsirmpas ◽  
Ianos Papatheodorou ◽  
Georgia Koutsouri ◽  
Dimitris Koutsouris

3D printing is about being able to print any object layer by layer. But if one questions this proposition, can one find any three-dimensional objects that can't be printed layer by layer? To banish any disbeliefs the authors walked together through the mathematics that prove 3d printing is feasible for any real life object. 3d printers create three-dimensional objects by building them up layer by layer. The current generation of 3d printers typically requires input from a CAD program in the form of an STL file, which defines a shape by a list of triangle vertices. The vast majority of 3d printers use two techniques, FDM (Fused Deposition Modelling) and PBP (Powder Binder Printing). One advanced form of 3d printing that has been an area of increasing scientific interest the recent years is bioprinting. Cell printers utilizing techniques similar to FDM were developed for bioprinting. These printers give us the ability to place cells in positions that mimic their respective positions in organs. Finally, through a series of case studies the authors show that 3d printers have made a massive breakthrough in medicine lately.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Salvatore Brischetto ◽  
Alessandro Ciano ◽  
Carlo Giovanni Ferro

AbstractThe present paper shows an innovative multirotor Unmanned Aerial Vehicle (UAV) which is able to easily and quickly change its configuration. In order to satisfy this feature, the principal structure is made of an universal plate, combined with a circular ring, to create a rail guide able to host the arms, in a variable number from 3 to 8, and the legs. The arms are adjustable and contain all the avionic and motor drivers to connect the main structure with each electric motor. The unique arm design, defined as all-in-one, allows classical single rotor configurations, double rotor configurations and amphibious configurations including inflatable elements positioned at the bottom of the arms. The proposed multi-rotor system is inexpensive because of the few universal pieces needed to compose the platform which allows the creation of a kit. This modular kit allows to have a modular drone with different configurations. Such configurations are distinguished among them for the number of arms, number of legs, number of rotors and motors, and landing capability. Another innovation feature is the introduction of the 3D printing technology to produce all the structural elements. In this manner, all the pieces are designed to be produced via the Fused Deposition Modelling (FDM) technology using desktop 3D printers. Therefore, an universal, dynamic and economic multi-rotor UAV has been developed.


Author(s):  
Mo Chen ◽  
Qinglei Ji ◽  
Xiran Zhang ◽  
Lei Feng ◽  
Xi Vincent Wang ◽  
...  

The thermoplastic polyurethane (TPU) material is an elastomer that can be used for inflatable products. Fused deposition modelling (FDM) is a widely used additive manufacturing process for TPU material due to the capability of generating complex structures with low cost. However, TPU is soft and thus difficult to be extruded as continuously and uniformly as hard materials such as polylactide by FDM. Inappropriate extruder structure and speed settings can lead to filament buckling problem, resulting in poor material filling quality, long printing time and low printing success rate. This paper aims at improving the FDM printing efficiency of TPU inflatable products by adding lateral support to the filament and finding out the appropriate speed ranges for different wall features and thicknesses. Firstly, a filament guide sheet is designed as being inserted into the gap between the drive gears and the bottom frame of the gear chamber in order to prevent the soft TPU filament from buckling. Secondly, inflatable product wall features are classified into floors, roofs and sidewalls and experiment for finding the relationship between printing speed and airtightness is carried out. In order to verify the proposed solution, wall features are printed and the material fillings obtained under different printing speeds are compared by measuring the airtightness of the wall features. Results show that the proposed filament guide sheet mitigates filament buckling, and the speed range that meets the airtightness requirement can be found for various wall features and thicknesses. In summary, the sealing of the filament feeding channel between the drive gears and the nozzle, as well as the speed optimisation according to product features, are essential for the efficient printing of TPU inflatable products.


Sign in / Sign up

Export Citation Format

Share Document