Shoulder Proprioception Device (S.P.D.): A Novel Design for Measuring Shoulder Joint Proprioception

Author(s):  
Jeremy R. Schnipke ◽  
Thomas G. Rounds ◽  
Jacob P. Sroka ◽  
Zachary B. Lowe ◽  
Gregory M. Freisinger ◽  
...  

Abstract Shoulder injuries are a serious and costly issue, particularly in physically intensive professions like athletics and the military. Previous data indicates a dangerous feedback mechanism between reduced shoulder proprioception due to previous injury and higher probability of re-injury due to reduced proprioception. It is therefore important for organizations to possess a device that can accurately and efficiently evaluate and track an individual’s shoulder proprioception, especially following injury. Existing technologies that fill this role are generally impractical or do not quantify proprioception to the necessary levels of accuracy. The Shoulder Proprioception Device (SPD) therefore strives to measure and quantify three-dimensional shoulder proprioception in a highly accurate, user-friendly, and cost-effective manner. This device employs two Inertial Measurement Units (IMUs) with nine degrees-of-freedom attached to the lateral and frontal sides of the upper arm. These sensors are connected to a microcontroller board with a touch screen and datalogger. The screen displays the shoulder angles in real-time and allows the user to store discrete angle positions for further analysis through the data-logger. The system is compact (390 cubic centimeter volume), light (0.34 kilograms), and cost effective ($179 per unit). This device is capable of measuring, in a total procedural time of seven minutes, shoulder proprioception within two degrees of accuracy along the three anatomical planes of motion: sagittal flexion/extension, frontal abduction/adduction, and transverse abduction/adduction. This device is able to both aid upper extremity research and provide data to those making return to duty decisions following injury.

2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Jiamin Wang ◽  
Oumar R. Barry

Abstract Uncontrollable shaking in the human wrist, caused by pathological tremor, can significantly undermine the power and accuracy in object manipulation. In this paper, the design of a tremor alleviating wrist exoskeleton (TAWE) is introduced. Unlike the works in the literature that only consider the flexion/extension (FE) motion, in this paper, we model the wrist joint as a constrained three-dimensional (3D) rotational joint accounting for the coupled FE and radial/ulnar deviation (RUD) motions. Hence TAWE, which features a six degrees-of-freedom (DOF) rigid linkage structure, aims to accurately monitor, suppress tremors, and provide light-power augmentation in both FE and RUD wrist motions. The presented study focuses on providing a fundamental understanding of the feasibility of TAWE through theoretical analyses. The analytical multibody modeling of the forearm–TAWE assembly provides insight into the necessary conditions for control, which indicates that reliable control conditions in the desired workspace can be acquired by tuning the design parameters. Nonlinear regressions are then implemented to identify the information that is crucial to the controller design from the unknown wrist kinematics. The proposed analytical model is validated numerically with V-REP and the result shows good agreement. Simulations also demonstrate the reliable performance of TAWE under controllers designed for tremor suppression and movement assistance.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Ricardo Manuel Millán Vaquero ◽  
Alexander Vais ◽  
Sean Dean Lynch ◽  
Jan Rzepecki ◽  
Karl-Ingo Friese ◽  
...  

We present processing methods and visualization techniques for accurately characterizing and interpreting kinematical data of flexion–extension motion of the knee joint based on helical axes. We make use of the Lie group of rigid body motions and particularly its Lie algebra for a natural representation of motion sequences. This allows to analyze and compute the finite helical axis (FHA) and instantaneous helical axis (IHA) in a unified way without redundant degrees of freedom or singularities. A polynomial fitting based on Legendre polynomials within the Lie algebra is applied to provide a smooth description of a given discrete knee motion sequence which is essential for obtaining stable instantaneous helical axes for further analysis. Moreover, this allows for an efficient overall similarity comparison across several motion sequences in order to differentiate among several cases. Our approach combines a specifically designed patient-specific three-dimensional visualization basing on the processed helical axes information and incorporating computed tomography (CT) scans for an intuitive interpretation of the axes and their geometrical relation with respect to the knee joint anatomy. In addition, in the context of the study of diseases affecting the musculoskeletal articulation, we propose to integrate the above tools into a multiscale framework for exploring related data sets distributed across multiple spatial scales. We demonstrate the utility of our methods, exemplarily processing a collection of motion sequences acquired from experimental data involving several surgery techniques. Our approach enables an accurate analysis, visualization and comparison of knee joint articulation, contributing to the evaluation and diagnosis in medical applications.


2021 ◽  
Vol 10 ◽  
Author(s):  
Sian Chen ◽  
Chenbin Chen ◽  
Yuanbo Hu ◽  
Ce Zhu ◽  
Xiaozhi Luo ◽  
...  

Gastric cancer (GC) is one of the most common malignancies with high mortality and substantial morbidity. Although the traditional treatment strategies for GC revolve around surgery, radiotherapy, and chemotherapy, none have been able to optimally treat most affected patients. To improve clinical outcomes and overcome potential GC resistance, we established a three-dimensional (3D) culturing platform that accurately predicts drug responses in a time- and cost-effective manner. We collected tumor tissues from patients following surgeries and cultured them for 3 days using our protocol. We first evaluated cell proliferation, viability, and apoptosis using the following markers: Ki67 and cleaved caspase 3 (Cas3). We demonstrated that cell viability was maintained for 72 h in culture and that the tumor microenvironments and vascular integrities of the tissues were intact throughout the culture period. We then administered chemotherapeutics to assess drug responses and found differential sensitivity across different patient-derived tissues, enabling us to determine individualized medication plans. Overall, our study validated this rapid, cost-effective, scalable, and reproducible protocol for GC tissue culture that can be employed for drug response assessments. Our 3D culture platform paves a new way for personalized medication in GC and other tumors and can greatly impact future oncological research.


Author(s):  
A Thakker ◽  
C Sheahan ◽  
P Frawley ◽  
H B Khaleeq

An innovative approach to the manufacture of impulse turbine blades using rapid prototyping, fused decomposition modelling (FDM), is presented in this paper. These blades were designed and manufactured by the Wave Energy Research Team (WERT) at the University of Limerick for the experimental analysis of a 0.6m impulse turbine with fixed guide vanes for wave energy power conversion. The computer aided design/manufacture (CAD/CAM) package Pro-Engineer 2000i was used for three-dimensional solid modelling of the individual blades. A detailed finite element analysis (FEA) of the blades under centrifugal loads was performed using Pro-Mechanica. Based on this analysis and FDM machine capabilities, blades were redesigned. Finally, Pro-E data were transferred to an FDM machine for the manufacture of turbine blades. The objective of this paper is to present the innovative method used to design, modify and manufacture blades in a time and cost effective manner using a concurrent engineering approach.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Young Jung ◽  
Kyungkuk Jung ◽  
Byunggeon Park ◽  
Jaehyuk Choi ◽  
Donghwan Kim ◽  
...  

Abstract We present a highly elastic and wearable piezoresistive strain sensor based on three-dimensional, micro-porous graphene-coated polydimethylsiloxane (PDMS) sponge suitable for being attached on human skin. The proposed strain sensors are simply fabricated by a sugar templating process and dip coating method based graphene ink in a facile and cost effective manner. The fabricated graphene-coated PDMS sponge shows highly stable mechanical properties in various tensile stress–strain test. A graphene thin film coated onto the backbone of PDMS sponges is used as the sensing materials of piezoresisitve strain sensors. The changes in resistance of the devices are highly stable, repeatable, and reversible when various strain is applied. Furthermore, the strain sensors show excellent sensing performance under different strain rate and mechanically robustness enough to be worked stably under repeated loads without any degradation.


2007 ◽  
Vol 129 (6) ◽  
pp. 838-847 ◽  
Author(s):  
Joon-young Kim ◽  
James K. Mills ◽  
Albert H. Vette ◽  
Milos R. Popovic

Arm-free paraplegic standing via functional electrical stimulation (FES) has drawn much attention in the biomechanical field as it might allow a paraplegic to stand and simultaneously use both arms to perform daily activities. However, current FES systems for standing require that the individual actively regulates balance using one or both arms, thus limiting the practical use of these systems. The purpose of the present study was to show that actuating only six out of 12 degrees of freedom (12-DOFs) in the lower limbs to allow paraplegics to stand freely is theoretically feasible with respect to multibody stability and physiological torque limitations of the lower limb DOF. Specifically, the goal was to determine the optimal combination of the minimum DOF that can be realistically actuated using FES while ensuring stability and able-bodied kinematics during perturbed arm-free standing. The human body was represented by a three-dimensional dynamics model with 12-DOFs in the lower limbs. Nakamura’s method (Nakamura, Y., and Ghodoussi, U., 1989, “Dynamics Computation of Closed-Link Robot Mechanisms With Nonredundant and Redundant Actuators,” IEEE Trans. Rob. Autom., 5(3), pp. 294–302) was applied to estimate the joint torques of the system using experimental motion data from four healthy subjects. The torques were estimated by applying our previous finding that only 6 (6-DOFs) out of 12-DOFs in the lower limbs need to be actuated to facilitate stable standing. Furthermore, it was shown that six cases of 6-DOFs exist, which facilitate stable standing. In order to characterize each of these cases in terms of the torque generation patterns and to identify a potential optimal 6-DOF combination, the joint torques during perturbations in eight different directions were estimated for all six cases of 6-DOFs. The results suggest that the actuation of both ankle flexion∕extension, both knee flexion∕extension, one hip flexion∕extension, and one hip abduction∕adduction DOF will result in the minimum torque requirements to regulate balance during perturbed standing. To facilitate unsupported FES-assisted standing, it is sufficient to actuate only 6-DOFs. An optimal combination of 6-DOFs exists, for which this system can generate able-bodied kinematics while requiring lower limb joint torques that are producible using contemporary FES technology. These findings suggest that FES-assisted arm-free standing of paraplegics is theoretically feasible, even when limited by the fact that muscles actuating specific DOFs are often denervated or difficult to access.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masanori Onishi ◽  
Takeshi Ise

AbstractThe identification and mapping of trees via remotely sensed data for application in forest management is an active area of research. Previously proposed methods using airborne and hyperspectral sensors can identify tree species with high accuracy but are costly and are thus unsuitable for small-scale forest managers. In this work, we constructed a machine vision system for tree identification and mapping using Red–Green–Blue (RGB) image taken by an unmanned aerial vehicle (UAV) and a convolutional neural network (CNN). In this system, we first calculated the slope from the three-dimensional model obtained by the UAV, and segmented the UAV RGB photograph of the forest into several tree crown objects automatically using colour and three-dimensional information and the slope model, and lastly applied object-based CNN classification for each crown image. This system succeeded in classifying seven tree classes, including several tree species with more than 90% accuracy. The guided gradient-weighted class activation mapping (Guided Grad-CAM) showed that the CNN classified trees according to their shapes and leaf contrasts, which enhances the potential of the system for classifying individual trees with similar colours in a cost-effective manner—a useful feature for forest management.


Author(s):  
Anria Strydom ◽  
P. Schalk Els

The use of controllable semi-active damping is considered by the vehicle dynamics community to be a cost effective and fail-safe method to reduce the ride comfort and handling tradeoff of a vehicle. This paper investigates the semi-active control of a suspension system for a 4-wheeled single seated off-road vehicle for both ride comfort and handling. The test vehicle is distinct with several characteristics that are not commonly observed on normal vehicles or addressed in existing literature. For instance, the absence of a differential in the driveline causes drivability and handling issues that are aggravated by increased damping. The suspension system contains controllable dampers and passive hydro-pneumatic spring-damper units. Passive damping is not entirely eliminated from the suspension, but the effect of various passive damping factors on the performance of the suspension is also investigated. Skyhook and groundhook control is implemented on a nonlinear, three-dimensional, 12 degrees of freedom simulation model to determine the achievable improvement in ride comfort and handling ability of the test vehicle. Simulation results show that reduced passive damping is capable of improving both the ride comfort and maneuverability of the test vehicle.


Author(s):  
F. Menna ◽  
E. Nocerino ◽  
B. Chemisky ◽  
F. Remondino ◽  
P. Drap

Abstract. Photogrammetry needs known geometric elements to provide metric traceable measurements. These known elements can be a distance between two three-dimensional object points or two camera stations, or a combination of known coordinates and/or angles to solve the seven degrees of freedom that lead to rank deficiency of the normal-equation matrix. In this paper we present a novel approach for scaling and levelling to the local vertical direction an underwater photogrammetric survey. The developed methodology is based on a portable low-cost device designed and realized by the authors that uses depth measurements from a high resolution pressure sensor. The prototype consists of a data logger featuring a pressure sensor synchronized with a digital camera in its underwater pressure housing. The modular design, with optical communication and synchronization, provides great flexibility not requiring the camera housing to undergo any hardware modifications. The proposed methodology allows for a full 3D levelling transformation comprising two angles, a vertical translation and a scale factor and can work for surveying scenes extending horizontally, vertically or both. The paper presents the theoretical principles, an overview of the developed system together with preliminary calibration results. Tests in a lake and at sea are reported. An accuracy better than 1:5000 on the length measurement was achieved in calm water conditions.


2019 ◽  
Vol 29 (8) ◽  
pp. 1104-1106
Author(s):  
Kristin Schneider ◽  
Stephanie Ghaleb ◽  
David L. S. Morales ◽  
Justin T. Tretter

AbstractWe present a case of pulmonary venous baffle obstruction in a child with a history of congenitally corrected transposition status post double switch repair. We highlight two forms of volume rendering three-dimensional reconstructions from computed tomographic data which allowed for detailed pre-surgical planning. These reconstructions emphasise the concept of maximizing previously obtained two-dimensional data in a time-efficient and cost-effective manner. The benefits of these reconstructions are reviewed, highlighting the relatively novel virtual dissection reconstruction technique that appeared identical to what the surgeon encountered in the operating theatre. This technique allowed the surgeon to quickly advance a preconceived detailed surgical repair.


Sign in / Sign up

Export Citation Format

Share Document