Study of Metallurgical and Mechanical Behavior of Laser Butt-Welded Dissimilar Joint of Inconel and Stainless Steel

Author(s):  
Sanjib Jaypuria ◽  
Santosh Kumar Gupta ◽  
Sulthan Suresh-Fazeela ◽  
Dilip Kumar Pratihar ◽  
Debalay Chakrabarti ◽  
...  

Abstract High energy density welding processes like laser and electron beam welding are capable of welding dissimilar plates with much ease due to high power density and low heat input in spite of the varying thermos-physical properties of the used alloys. The present work is aimed to check the feasibility of joint prepared with laser welding of SS 316L and Inconel 718 plates. The experiments are designed to study the effect of welding speed on the mechanical and metallurgical behavior of the joints without any offset to joint line. The formation of laves phases is confirmed by energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) phase analysis. These laves phase are micro-segregation of Nb, Fe, C and Cr, which is because of high temperature in a small area of fusion zone (FZ) due to intense heat of laser source. Micro-segregation of different elements has led to micro-fissures, which is detrimental for the joints operating at elevated temperature. Cooling rate and peak temperature during welding play the significant role in obtaining a sound quality joint. The present work gives an insight on feasibility of laser welded joint of SS 316L and Inconel 718 with suitable selection of welding speed during laser welding.

Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 279 ◽  
Author(s):  
Qi Zhu ◽  
Miaoxia Xie ◽  
Xiangtao Shang ◽  
Geng An ◽  
Jun Sun ◽  
...  

Owing to its potential application prospect in novel accident tolerant fuel, molybdenum alloys and their welding technologies have gained great importance in recent years. The challenges of welding molybdenum alloys come from two aspects: one is related to its powder metallurgy manufacturing process, and the other is its inherent characteristics of refractory metal. The welding of powder metallurgy materials has been associated with issues such as porosity, contamination, and inclusions, at levels which tend to degrade the service performances of a welded joint. Refractory metals usually present poor weldability due to embrittlement of the fusion zone as a result of impurities segregation and the grain coarsening in the heat-affected zone. A critical review of the current state of the art of welding Mo alloys components is presented. The advantages and disadvantages of the various methods, i.e., electron-beam welding (EBW), tungsten-arc inert gas (TIG) welding, laser welding (LW), electric resistance welding (ERW), and brazing and friction welding (FW) in joining Mo and Mo alloys, are discussed with a view to imagine future directions. This review suggests that more attention should be paid to high energy density laser welding and the mechanism and technology of welding Mo alloys under hyperbaric environment.


2017 ◽  
Vol 24 ◽  
pp. 40-47
Author(s):  
Aravind Murugan ◽  
R. Sai Santhosh ◽  
Ravikumar Raju ◽  
A.K. Lakshminarayanan ◽  
Shaju K. Albert

The end plug to cladding tube of fast reactor fuel pin is normally welded using Gas Tungsten Arc Welding (GTAW) process. The GTAW process has large heat input and wide heat-affected-zone (HAZ) than high energy density process such as laser welding. In the present study Laser Beam Welding (LBW) is being considered as an alternative welding process to join end plug to clad tube. The characteristics of autogenous processes such as GTAW and pulsed Nd-YAG laser welding on fuel cladding tube to end plug joints have been investigated in this study. Dissimilar combinations of modified stainless steel (SS) alloy D9 cladding tube to SS316L end plug, and similar combinations of SS316L cladding tube to SS316L end plug were successfully welded using the above two welding processes. The laser welding was performed at the butting surfaces of the cladding tube and the end plug, and also by shifting the laser beam by 0.2 mm towards the end plug side to compensate the heat balance and for improving the Creq/Nieq ratio in the molten pool. Helium Leak Test (HLT) and Radiography Test (RT) were carried out to validate the quality of the welds. The microstructures of the weld joints were analysed using optical microscope. In the present study, it has been demonstrated that it is possible to obtain welds free from hot cracks by shifting the laser beam by 0.2 mm towards end plug side, while the weld produced using the beam positioned at the interface shows cracks in the weld.


2018 ◽  
Vol 8 (10) ◽  
pp. 1997 ◽  
Author(s):  
Yu Zhan ◽  
Enda Zhang ◽  
Yiming Ge ◽  
Changsheng Liu

Laser welding is widely used in titanium alloy welding due to its high energy density, small heat affected zone, and rapid processing ability. However, problems with laser welding, such as deformation and cracking caused by residual stress, need to be resolved. In this paper, the residual stress in laser welding of TC4 titanium alloy was studied using an ultrasonic laser. The residual stress in titanium alloy plates is considered a plane stress state. A pre-stress loading method is proposed and acoustoelastic coefficients are obtained. Based on the known acoustoelastic coefficients, the transverse and longitudinal residual stresses in laser welding are measured using an ultrasonic laser. The results show that longitudinal residual stress is greater than the transverse stress. The distribution regularity of the residual stress is similar to normal welding, but the tensile stress zone is much narrower. Then, the influence of heat input and welding speed on residual stress is discussed. With increasing heat input, the welding zone widens, and the peak value of the residual stress increases. A higher welding speed should be chosen when the welding power is constant. This research has important significance for the measurement and control of residual stress in the laser welding process.


2020 ◽  
Vol 34 (04) ◽  
pp. 2050056
Author(s):  
Deyong Tian ◽  
Zhuanni Gao ◽  
Feiyun Wang ◽  
Tingyan Yan ◽  
Min Yu ◽  
...  

The high energy density beam welding techniques, such as laser and electron beam welding process, have been widely used in industrial applications. In this study, the butt structures of Ti-6Al-4V alloys with the thickness up to 8 mm are successfully joined by the laser welding process. The macromorphology and microstructures of the welded joints are investigated by a scanning electron microscope (SEM). The penetration increases from 5.91 mm to 9.37 mm with the decrease of welding speed from 1.2 m/min to 0.8 m/min under the condition of equal laser power. The acicular [Formula: see text] is formed in the fusion zone, resulting from high cooling rate during the process. The metallurgical porosity formation is proposed by investigating the distribution of Al and H elements around the pores. It is concluded that the pores in the weld bead are induced by aluminum vapor and hydrogen gas from the molten pool. The diameter of metallurgical pore has a tendency to increase with the decrease of welding speed.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1910
Author(s):  
Zheng-Xiong Ma ◽  
Pei-Xin Cheng ◽  
Jie Ning ◽  
Lin-Jie Zhang ◽  
Suck-Joo Na

With the rapid development of high power laser, laser welding has been widely used in many fields including manufacturing, metallurgy, automobile, biomedicine, electronics, aerospace etc. Because of its outstanding advantages, such as high energy density, small weld size, easy automation. Combining the two heat sources of laser and arc for welding can achieve excellent results due to the synergistic effect. Laser welding is a complicated physical and chemical metallurgical process, involving the laser beam and molten pool, keyholes and materials melting, evaporation and multiple physical process. Process monitoring and quality control are important content of research and development in the field of laser welding, which is the premise to obtain fine weld with high quality. Numerical simulation technology can describe many complex physical phenomena in welding process, which is very important to predict weld forming and quality and clarify the underline mechanism. In this paper, the research progress of process monitoring, quality control and autonomous intelligent design of laser and laser-arc hybrid welding based on numerical simulation were reviewed, and the research hotspots and development trends of laser welding in the future are predicted.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1690
Author(s):  
Jian Qiao ◽  
Peng Yu ◽  
Yanxiong Wu ◽  
Taixi Chen ◽  
Yixin Du ◽  
...  

Amorphous alloys have emerged as important materials for precision machinery, energy conversion, information processing, and aerospace components. This is due to their unique structure and excellent properties, including superior strength, high elasticity, and excellent corrosion resistance, which have attracted the attention of many researchers. However, the size of the amorphous alloy components remains limited, which affects industrial applications. Significant developments in connection with this technology are urgently needed. Laser welding represents an efficient welding method that uses a laser beam with high energy-density for heating. Laser welding has gradually become a research hotspot as a joining method for amorphous alloys due to its fast heating and cooling rates. In this compact review, the current status of research into amorphous-alloy laser welding technology is discussed, the influence of technological parameters and other welding conditions on welding quality is analyzed, and an outlook on future research and development is provided. This paper can serve as a useful reference for both fundamental research and engineering applications in this field.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Enrico Lertora ◽  
Chiara Mandolfino ◽  
Carla Gambaro

Nickel alloys are very important in many aerospace applications, especially to manufacture gas turbines and aero engine components, where high strength and temperature resistance are necessary. These kinds of alloys have to be welded with high energy density processes, in order to preserve their high mechanical properties. In this work, CO2laser overlap joints between Inconel 718 sheets of limited thickness in the absence of postweld heat treatment were made. The main application of this kind of joint is the manufacturing of a helicopter engine component. In particular the aim was to obtain a specific cross section geometry, necessary to overcome the mechanical stresses found in these working conditions without failure. Static and dynamic tests were performed to assess the welds and the parent material fatigue life behaviour. Furthermore, the life trend was identified. This research pointed out that a full joint shape control is possible by choosing proper welding parameters and that the laser beam process allows the maintenance of high tensile strength and ductility of Inconel 718 but caused many liquation microcracks in the heat affected zone (HAZ). In spite of these microcracks, the fatigue behaviour of the overlap welds complies with the technical specifications required by the application.


Author(s):  
Brandon M. Wilson ◽  
Aaron Koskelo

Los Alamos National Laboratory is interested in developing high-energy-density physics validation capabilities for its multiphysics code xRAGE. xRAGE was recently updated with the laser package Mazinisin to improve predictability. We assess the current implementation and coupling of the laser package via validation of laser-driven, direct-drive spherical capsule experiments from the Omega laser facility. The ASME V&V 20-2009 standard is used to determine the model confidence of xRAGE, and considerations for high-energy-density physics are identified. With current modeling capabilities in xRAGE, the model confidence is overwhelmed by significant systematic errors from the experiment or model. Validation evidence suggests cross-beam energy transfer as a dominant source of the systematic error.


2020 ◽  
Vol 165 ◽  
pp. 03002
Author(s):  
Li Jing ◽  
Che Ying ◽  
Jin Meishan ◽  
Zhai Yannan ◽  
Ding Changhong

Fiber optic super continuous spectrum laser technology is a new technology developed in recent years. It takes into account the advantages of good alignment of laser source, high energy density and wide wavelength range of ordinary white light source, which can not only accurately remote sense distant target, but also obtain hyperspectral information of distant target. Super continuous spectrum of laser radar is a kind of remote sensing monitoring instrument, it can obtain three-dimensional spectral information of the target, and can be accurately detected in the night of distant high spectral information, the all-weather, three-dimensional spectrum detection method with the traditional passive remote sensing compared with single/multiband laser radar technology has incomparable advantages. Based on the development trend of lidar abroad, the development status of super-continuous spectrum lidar in China and the problems in remote sensing detection of oil spill, this paper introduces the feasibility of using super-continuous spectrum laser to monitor oil spill in the sea, which lays a foundation for further research.


Sign in / Sign up

Export Citation Format

Share Document