Evaluation of Crushing Response of Limited Bonding of a Composite Core With a Cross Tube

Author(s):  
Sean Jenson ◽  
Muhammad Ali ◽  
Khairul Alam

Abstract Rectangular and round tubular structures are typically used in a vehicles’ front structure to increase the energy absorption capacity in the event of an accident. There is significant interest in lighter structures for improving automobiles’ fuel efficiency with the challenge of maintaining or preferably exceeding the energy absorption properties of the structure. The structural members are designed to take on the challenge of absorbing maximum amount of energy in a relatively short period of time, while also maintaining reactive forces below damaging levels as they undergo progressive deformation under axial loading. The type of deformation mode is critical as it defines the overall configuration of force-displacement curve. There are different types of deformation modes for cross tube under axial loading. Likewise, cellular structures exhibit distinct deformation modes under in-plane loading. The work presented here investigates the effects of bonding of composite cellular core structure on deformation modes of cross tubes under axial loading. The numerical simulations were performed in ABAQUS finite element software. Four cases were considered for analysis. The first case did not contain core bonding. The second case consisted of 3 bonding sites. In the third case, 5 bonding zones were defined and in the final case, 7 bonding sites were assigned. Bonding of the composite core resulted in an increase of up to 39.2% energy absorption as compared to the unbonded case. The results show discrete bonding of composite cellular core with the tube has significant effect on progressive deformation of tubes and therefore, presents an opportunity to re-configure force-displacement curve for improved protection of automobile structures under impact loading.

Author(s):  
Muhammad Ali ◽  
Eboreime Ohioma ◽  
Khairul Alam

Thin walled members such as square tubes are commonly used in vehicle’s frontal chassis to provide protection and damage attenuation to the passenger cabin in the case of impact loading. These structural members undergo progressive deformation under axial loading. The type of deformation mode is critical as it defines the overall configuration of force-displacement curve. There are different types of deformation modes for square tube under axial loading. Likewise, cellular structure exhibit distinct deformation modes under in-plane loading. The work presented here investigates the effects of partial or discrete bonding of cellular core structure on deformation modes of square tubes under axial loading. The results show that discrete bonding of cellular core with the tube has significant effect on progressive deformation of tubes and therefore, presents an opportunity to re-configure force-displacement curve for improved protection of automobile structures under impact loading.


Author(s):  
Sean Jenson ◽  
Eboreime Ohioma ◽  
Muhammad Ali ◽  
Khairul Alam

Abstract Thin walled members are commonly used in vehicle’s frontal chassis to provide protection and damage attenuation to the passenger cabin in the case of an impact loading. These structural members undergo progressive deformation under axial loading. The type of deformation mode is critical as it defines the overall configuration of force-displacement curve. There are different types of deformation modes for cross tubes under axial loading. Likewise, the cellular structures exhibit distinct deformation modes under in-plane loading. The work presented here investigates the effects of bonding of cellular core structure on deformation modes of cross tubes under axial loading. The results show that partial, or discrete bonding of cellular core with the tube has significant effect on progressive deformation of tubes and therefore, presents an opportunity to re-configure force-displacement curve for improved protection of automobile structures under impact loading.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110368
Author(s):  
Dong An ◽  
Jiaqi Song ◽  
Hailiang Xu ◽  
Jingzong Zhang ◽  
Yimin Song ◽  
...  

When the rock burst occurs, energy absorption support is an important method to solve the impact failure. To achieve constant resistance performance of energy absorption device, as an important component of the support, the mechanical properties of one kind of prefolded tube is analyzed by quasi-static compression test. The deformation process of compression test is simulated by ABAQUS and plastic strain nephogram of the numerical model are studied. It is found that the main factors affecting the fluctuation of force-displacement curve is the stiffness of concave side wall. The original tube is improved to constant resistance by changing the side wall. The friction coefficient affects the folding order and form of the energy absorbing device. Lifting the concave side wall stiffness can improve the overall stiffness of energy absorption device and slow down the falling section of force-displacement curve. It is always squeezed by adjacent convex side wall in the process of folding, with large plastic deformation. Compared with the original one, the improved prefolded tube designed in this paper can keep the maximum bearing capacity ( Pmax), increase the total energy absorption ( E), improve the specific energy absorption (SEA), and decrease the variance ( S2) of force-displacement curve.


2012 ◽  
Vol 585 ◽  
pp. 34-38 ◽  
Author(s):  
Manmohan Dass Goel ◽  
Laxminarayan Krishnappa

Modeling and numerical simulation of aluminum foam filled square tubes under axial impact loading is presented. The foam-filled thin-walled square tubes are modeled as shell wherein, foam core is modeled by incorporating visco-elastic plastic foam model in Altair® RADIOSS. Deformation and energy absorption studies with single, bi-tubular, and multi-tube structure with and without aluminum foam core are carried out for assessing its effectiveness in crashworthiness under the identical conditions. It is observed that the multi-tube structure with foam core modify the deformation modes considerably and results in substantial increase in energy absorption capacity in comparison with the single and multi-tube without foam core. Moreover, the multi-tube foam filled structure shows complicated deformation modes due to the significant effect of stress wave propagation. This study will help automotive industry to design superior crashworthy components with multi-tube foam filled structures and will reduce the experimental trials by conducting the numerical simulations.


2013 ◽  
Vol 315 ◽  
pp. 872-878 ◽  
Author(s):  
S. Kanna Subramaniyan ◽  
Shahruddin Mahzan ◽  
Mohd Imran Ghazali ◽  
Ahmad Mujahid Ahmad Zaidi ◽  
Prasath Kesavan Prabagaran

Foam-filled enclosures are very common in structural crashworthiness to increase energy absorption. However, very less research has been targeted on potential use of natural/recycled material reinforced foam-filled tubes. Therefore, an experimental investigation was performed to quantify energy absorption capacity of polyurethane (PU) composite foam-filled circular steel tubes under quasi-static axial loading. The thickness of the tubes was varied from 1.9, 2.9 and 3.6 mm. The tubes were filled with PU composite foam. The PU composite foam was processed with addition of kenaf plant fiber and recycled rubber particles that were refined at 80 mesh particulates into PU system. The density of PU resin was varied from 100, 200 and 300 kgm-3. The PU composite foam-filled tubes were crushed axially at constant speed in a universal testing machine and their energy absorption was characterized from the resulting load-deflection data. Results indicate that PU composite foam-filled tubes exhibited better energy absorption capacity than those PU foam-filled tubes and its respective empty tubes. Interaction effect between the tube and the foam and incorporation of filler into PU system led to an increase in mean crushing load compared to that of the unfilled PU foam or tube itself. Relatively, progressively collapse modes were observed for all tested tubes. Findings suggested that composite foam-filled tubes could be used as crashworthy member.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5578-5583 ◽  
Author(s):  
S. B. KIM ◽  
H. HUH ◽  
G. H. LEE ◽  
J. S. YOO ◽  
M. Y. LEE

This paper deals with the crashworthiness of an aluminum crash box for an auto-body with the various shapes of cross section such as a rectangle, a hexagon and an octagon. First, crash boxes with various cross sections were tested with numerical simulation to obtain the energy absorption capacity and the mean load. In case of the simple axial crush, the octagon shape shows higher mean load and energy absorption than the other two shapes. Secondly, the crash boxes were assembled to a simplified auto-body model for the overall crashworthiness. The model consists of a bumper, crash boxes, front side members and a sub-frame representing the behavior of a full car at the low speed impact. The analysis result shows that the rectangular cross section shows the best performance as a crash box which deforms prior to the front side member. The hexagonal and octagonal cross sections undergo torsion and local buckling as the width of cross section decreases while the rectangular cross section does not. The simulation result of the rectangular crash box was verified with the experimental result. The simulation result shows close tendency in the deformed shape and the load–displacement curve to the experimental result.


2020 ◽  
Vol 87 (12) ◽  
Author(s):  
Pengbo Su ◽  
Bin Han ◽  
Mao Yang ◽  
Zhongnan Zhao ◽  
Feihao Li ◽  
...  

Abstract The energy adsorption properties of all-metallic corrugated sandwich cylindrical shells (CSCSs) subjected to axial compression loading were investigated by the method combining experiments, finite element (FE) simulations, and theoretical analysis. CSCS specimens manufactured using two different methods, i.e., high-speed wire-cut electric discharge machining (HSWEDM) and extrusion, were tested under axial compression. While specimens fabricated separately by HSWEDM and extrusion both exhibited a stable crushing behavior, the extruded ones were much more applicable as lightweight energy absorbers because of their good energy absorption capacity, repeatability, and low cost. The numerically simulated force–displacement curve and the corresponding deformation morphologies of the CSCS compared well with those obtained from experiments. The specific folding deformation mode was revealed from both experiments and simulations. Subsequently, based upon the mode of folding deformation, a theoretical model was established to predict the mean crushing force of the CSCS construction. It was demonstrated that CSCSs with more corrugated units, smaller value of tc/tf and W/Ro could dissipate more impact energy. Such sandwich cylindrical shells exhibited better energy absorption than monolithic cylindrical shells, with an increase of at least 30%. Ultimately, the dynamic effect under the impact load was further evaluated. The dynamic amplification coefficient of CSCS decreased with the increase of the wall thickness.


Author(s):  
Muhammad Ali ◽  
Eboreime Ohioma ◽  
Khairul Alam

Square tubes are primarily used in automotive structures to absorb energy in the event of an accident. The energy absorption capacity of these structural members depends on several parameters such as tube material, wall thickness, axial length, deformation modes, locking strain, crushing stress, etc. In this paper, the work presented is a continuation of research conducted on exploring the effects of the introduction of cellular core in tubular structures under axial compressive loading. Here, the crushing response of composite cellular core tube was numerically studied using ABAQUS/Explicit module. The energy absorbing characteristics such as deformation or collapsing modes, crushing/ reactive force, crushing stroke, and energy curves were discussed. The composite cellular core tube shows promise for improving the crashworthiness of automobiles.


Author(s):  
Muhammad Ali ◽  
Khairul Alam ◽  
Eboreime Ohioma

Axial members are commonly used in automotive structures and are responsible for absorbing significant portion of impact energy in the event of an accident. This study was conducted to investigate the effects of inclusion of functionally graded cellular structures in thin walled members under compressive axial loading. A compact functionally graded cellular structure was introduced inside a 352 mm long square tube with side length and wall thickness of 74 mm and 3.048 mm, respectively. The tube wall material was aluminum. The cellular structure’s geometry was observed in the cross-section of a banana peel that has a specific graded cellular packing in a confined space. This packing enables the peel to protect the internal soft core from external impacts. The same cellular pattern was used to construct the structure in present study. The study was conducted using non-linear finite element analysis in ABAQUS. The hybrid structure (tube and graded cellular structure) was fixed on one side and on the other (free end) side, was struck by a rigid mass of 300 Kg travelling at a velocity of 35 mph (15.64 m/s) along the axis of the square tube and perpendicular to the in-plane direction of the graded cellular structure. The tube and cell walls were discretized using reduced integration, hourglass control, 4 nodes, and hexahedral shell elements. The impact plate was modeled with 4 node rigid shell elements. General contact conditions were applied to define surface interaction among graded structure, square tube, and rigid plate. The parameters governing the energy absorbing characteristics such as deformation or collapsing modes, crushing/ reactive force, and energy curves, were evaluated. The results showed that the inclusion of graded cellular structure increased the energy absorption capacity of the square tube by 41.06%. The graded structure underwent progressive stepwise, layer by layer, crushing mode and provided lateral stability to the square tube thus delaying local tube wall collapse and promoting outward convex localized folds on the tube’s periphery as compared to highly localized and compact deformation modes that are typically observed in an empty square tube under axial compressive loading. The variation in deformation mode, large contact areas, presence of graded cellular structure resulted in enhanced stiffness of the hybrid structure, and therefore, high energy absorption by the structure. The results of this preliminary study show a potential of functionally graded cellular materials to significantly improve the energy absorbing capacities of thin walled members under axial loading by altering member’s crushing deformation modes.


Author(s):  
Hassan Mansoori ◽  
Ramin Hamzehei ◽  
Soheil Dariushi

In most cylindrical tubes, the occurrence of negative stiffness under compression is unavoidable. This downward trend in the force–displacement relationship means a decrease in the energy-absorption capacity. To this end, this paper introduces a new assembly method comprising two concentric cylindrical tubes. The inner cylinder possesses positive Poisson's ratio behavior, whereas the outer cylinder exhibits negative Poisson's ratio behavior. When compressed, the outer and inner cylinders shrink and expand, respectively, creating surface contacts between the two cylinders, called coupling effects. This property not only avoids the occurrence of negative stiffness in outer cylindrical tube, but also increases the energy-absorption capacity in an upward trend in the force–displacement relationship. To confirm this claim, three different types of cylindrical tubes, possessing positive Poisson’s ratio, zero Poisson's ratio, and negative Poisson’s ratio behaviors, are considered. A finite-element analysis is implemented to simulate deformation patterns of cylindrical tubes. Then, to verify the results of finite-element analysis, a laser-cutting method is applied to fabricate cylindrical tubes from stainless steel tubes. The results show that the proposed assembly method increases the energy-absorption capacity by up to 95% compared to the well-known auxetic tube. Next, a parametric study is performed, in which the gap space between the two cylinders is considered as a design variable. The results reveal the smaller the gap space, the higher the energy-absorption capacity. The absorbed energy in the assembled cylinders without gap space is 17.6 J, which is 36% greater than that of cylinders with 13 mm gap space. The effects of relative density and crushing speed are also evaluated. When compared to the crushing speed, the energy-absorption capacity is highly dependent on relative density.


Sign in / Sign up

Export Citation Format

Share Document