Application of Noise Filtering Techniques for the Quantification of Uncertainty in Dent Strain Calculations

Author(s):  
Noah Ergezinger ◽  
Amandeep Singh Virk ◽  
Janine Woo ◽  
Muntaseer Kainat ◽  
Samer Adeeb

Abstract The integrity assessment of dents in pipelines is primarily driven by the dent depths as per the stipulations in current codes and standards. There is a provision for strain-based analysis to quantify the severity of dents based on their shapes in the ASME B31.8 non-mandatory Appendix R. In recent years, the pipeline industry has also started leveraging more advanced techniques such as Finite Element Analysis (FEA) for dent assessment. These assessments require the detailed deformation profile of dents, which are available from In-line Inspection (ILI) tools. The ILI tools use caliper arms that roll along the inside of the pipeline and scan the inner profile. The measurements recorded by each caliper arm are susceptible to noise due to the vibration of the ILI tool, and as a result, the dent shapes obtained from ILI are not smooth. Strain assessments of dents typically require the calculation of radius of curvature in the longitudinal and circumferential directions. This becomes a complex problem while the ILI data contains noise, particularly for relatively shallow dents, when the dent depth approaches the magnitude of the noise in the data. In these cases, the radius of curvature estimation can become highly inaccurate. Furthermore, the amount of noise in the data can vary between dents, and so the accuracy of the estimation varies as well. This paper presents several methods to resolve the above-mentioned issues. To address the issue of data noise itself, a combination of Fast Fourier Transform (FFT) and Gaussian filtering is used to produce a smooth profile that can be used to calculate the maximum radius of curvature of the dent. The smoothed profile also results in a better estimation of dent depth. To estimate the amount of uncertainty in the data, we apply many independent iterations of random noise to the smoothed curve. Characteristics required for further reliability analysis, such as dent depth or radius of curvature, are calculated for each iteration. This forms a distribution for each characteristic, and the properties of each distribution are used to quantify the uncertainty in the ILI data.

Author(s):  
Graeme Roberts ◽  
T. Sriskandarajah ◽  
Gianluca Colonnelli ◽  
Arnaud Roux ◽  
Alan Roy ◽  
...  

A method of carrying out a combined axial walking and lateral buckling assessment for a flexible flowline has been developed using finite element analysis. The method overcomes limitations of screening assessments which could be inconclusive when applied either to a flexible flowline on an undulating seabed with transverse gradients or to one that buckles during hydrotest. Flexible flowlines that were to be surface-laid on a seabed with longitudinal undulations and transverse gradients were assessed using the method. The flexible flowlines were simulated in their as-laid state, and the simulation incorporated hydrotest pressure and the pressure & temperature gradients and transients associated with multiple start-ups. The objective was to quantify the axial walking and lateral slip tendency of the flexible flowlines and the impact that walking might have on the connected end structures. The lateral buckle locations predicted by finite element analysis were compared to a post-hydrotest survey and the radius of curvature from analysis was compared to the minimum bend radius of the flexible.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhen Ouyang ◽  
Ke Wang ◽  
Zihao Yu ◽  
Kaikai Xu ◽  
Qianyu Zhao ◽  
...  

It is a complex problem to study the interaction between sand castle and flowing water, which needs to consider the complexity of seawater flow and the stress of sand castle structure. The authors use the fluid-solid coupling model to establish the connection between the fluid field and the structural mechanical field, and use the finite element analysis to complete the simulation modeling of the transient process of wave impact and sandcastle foundation deformation. This paper analyzes the stress and the first principal strain of the sand castle foundation in the direction of flow velocity when the sand castle foundation is hit by waves, as a method to judge the strength of the sand castle.The best shape: the boundary value of sand castle collapse caused by strain have been determined, so as to obtain the maximum stress that a sand castle foundation can bear before collapse, which makes it possible to use the fatigue strength calculation theory of sand castle solid to carry out the quantitative calculation of sand castle durability. At the same time, the impact of waves is abstracted as wave motion equation. Finally, the finite element analysis technology is adopted to calculate the main strain of sandcastles of different shapes under the impact of the same wave, and through the comparison of the main strain, the authors get the sandcastle shape with the strongest anti-wave impact ability, which is the eccentric circular platform body.Affected by rain: the authors considered the effect of rainwater infiltration on the sandcastle's stress, and simplified the process of rain as a continuous and uniform infiltration of rain into the sandcastle's surface. The rain changes the gravity of the sand on the castle's surface. Simulation analysis is adopted to calculate the surface stress of sand castle with different degree of water seepage and different geometry. By comparison, it has been found that the smooth cone is more able to withstand the infiltration of rain without collapse. 


2020 ◽  
Vol 8 (1) ◽  
pp. 48 ◽  
Author(s):  
Vasileios A. Mamatsopoulos ◽  
Constantine Michailides ◽  
Efstathios E. Theotokoglou

Today, the offshore oil and gas and wind power industry is a heavily regulated segment, and current standards have established restrictions which yield a very limited weather window for submarine cable installations due to experience with cable failure in bad weather. There are two main limiting factors in current practice during cable installation of an S-lay configuration: the design criterion for the minimum allowable radius of curvature in the touch down point and the avoidance of axial compression in the touch down zone. Accurate assessment of the cable integrity during offshore installation has drawn great attention and is related to the existing available analysis and design tools. The main purpose of this paper is to develop and propose a quick and easy custom-made analysis tool, which is able to export similar results as sophisticated finite element analysis software. The developed tool utilizes analytical equations of a catenary-type submarine structure extended to account for varying cross-sections with different weights and/or stiffnesses, as is the real practice. A comparative study is presented in this paper to evaluate the significance for the modeling of the “out of water” cable segment required for accurate safety factor quantification during a laying operation. The efficiency and accuracy of the proposed tool are proven through a validation study comparing the results and the computational effort and time with commercial finite element analysis software. The analysis error in the case of not modeling the “out of water” cable part is significant, especially in shallow water areas, which proves the importance of using the proposed analysis tool.


2013 ◽  
Vol 477-478 ◽  
pp. 1205-1209 ◽  
Author(s):  
Wei Yuan ◽  
Gai Mei Zhang ◽  
Da Zhi Liao ◽  
Jing Liu

UV-shaped corrugated cardboard Fusion V-shaped and U-shaped structure the advantages made, to make up for the lack of V-type and two U-shaped corrugated cardboard, the higher the compressive strength, good elasticity, is widely used UV type corrugated manufacturing corrugated board. But no strict standards for UV-shaped concrete structure of corrugated board size parameter corresponding corrugating roll no uniform size of the corrugated shape, in order to achieve the best elasticity and compressive strength. First, by mathematical methods, the corrugated structure is analyzed, and analysis to facilitate research, to select the 1/4 cycle corrugated. Create multiple vertical auxiliary line level is divided into 10 equal parts, to identify key points in shape between the V-shaped and U-shaped curve, connecting into multiple segments curve. Studied the actual thickness of the corrugated board of 3.8mm, a smaller thickness and therefore a straight line can be connected to each group of the resultant key points simplify the corrugated curve, model 1/4 of a cycle of UV-shaped corrugated first determined, using the symmetry of the model to establish a cycle, 300mm side length of the square created by one cycle of replication, about 38 of the corrugated board corrugated cycle. Use of finite element analysis in ANSYS corrugated structure, including a gradual transition to a simplified model of the 11 U-shaped flute-shaped corrugated cardboard from the V-shaped set of material properties, loads are cloth pressure, research corrugated cardboard stress and strain, i.e., the smaller the radius of curvature of the curve can be obtained along corrugated, the closer the U-shaped, corrugated board having a larger strain, i.e. has good flexibility, consistent with the empirical data to prove the feasibility of this analysis method.


2005 ◽  
Vol 297-300 ◽  
pp. 691-696
Author(s):  
Zeng Liang Gao ◽  
Wei Ming Sun ◽  
Jinsong Zheng ◽  
Wei Ya Jin ◽  
Kangda Zhang

Y-branch is often used in connection between a main pipe and two branch pipes, for example, in furnace, quench boiler, nuclear parts and so on. The stress distribution in the Y-branch is very complicated because of complicated shape and complex loads on it. The stresses in the Y-branches cannot be determined by theoretical equations. Finite element method is used to analyze the stresses in the Y-branches. As an example, a Y-branch used in a high temperature furnace is calculated with ANSYS software. The temperature distribution and elastic and elastic-plastic stress fields in the Y-branch under mechanical and thermal loads are calculated. Strength, creep and fatigue of the Y-branch are evaluated based on T-1300, T-1400 of ASME Boiler and Pressure Vessel code Sec Ⅲ Div 1 Subsection NH.


Author(s):  
Huifeng Jiang ◽  
Xuedong Chen ◽  
Zhichao Fan

Heretofore, several kinds of codes are applicable to the structural integrity assessment for pipe containing defects, i.e. API 579, R6 and BS 7910 etc. In this paper, different methods from API 579-1/ASME FFS-1: 2007 and R6-2000 were employed to assess the integrity of pipe containing a circumferential through-thickness crack. However, there was a significant difference between the calculated load ratios by these two codes, although the calculated fracture ratios were very close. To verify these results, elastic-plastic finite element analysis was carried out to calculate the limit load and the load ratio. Additionally, the experimental results and our previous engineering experience were also referred to. The final results imply that the larger load ratio obtained from R6-2000 rather than API 579 code is more reasonable for the pipe with good fracture toughness.


Author(s):  
Ajay Garg

Abstract Design and analysis of engineering components can be categorized under the theory of continuum mechanics, plates/shells or beams. Closed form solutions for determining deformations and stresses are available for simple structures with simple boundary conditions. In the cases of complex structures, boundary conditions and loads, analytical solutions are not readily available. Finite element analysis (FEA) can be performed to resolve the simulation barrier of these analytically indeterminate structures. Similar to analytical approach, FEA can simulate the components through solid, plate/shell or beam elements. Finite element analysis through 3-D solid elements is costly and may require time in weeks, which may not be at the disposal of an analyst. Axi-symmetric components and components with an infinite radius of curvature (flat surfaces), but with complex cross sections can be modeled by 2-D axi-symmetric and plate elements, respectively. Two dimensional finite elements require less time and hardware support than three-dimensional elements. Two development cases of successful application of 2-D finite elements instead of 3-D finite elements are discussed. Experimental and analytical verification of FEA results, and guidelines for checking finite element mesh discretization error are presented.


Author(s):  
Zeng Liang Gao ◽  
Wei Ming Sun ◽  
Jinsong Zheng ◽  
Wei Ya Jin ◽  
Kangda Zhang

Author(s):  
Louay S. Yousuf ◽  
Yaakob K. H. Dabool

Abstract The bending deflection of the disc cam profile and the dynamic response of the follower were discussed and analyzed for three paths of contact. The objective of this paper was to study the influence of maximum contact pressure on the bending deflection of the cam profile. Numerical simulation was carried out using SolidWorks Software to simulate the follower displacement, velocity and acceleration. Finite element analysis was used taking into account the use of ANSYS package to calculate the bending deflection. The experiment setup had been done through an infrared camera device. The bending deflection of point (18) is bigger than the bending deflection of point (4) because of the bigness of radius of curvature of nose (2).


2009 ◽  
Vol 24 (3) ◽  
pp. 1059-1068 ◽  
Author(s):  
Li Ma ◽  
Dylan J. Morris ◽  
Stefhanni L. Jennerjohn ◽  
David F. Bahr ◽  
Lyle Levine

Sudden displacement excursions during load-controlled nanoindentation of relatively dislocation-free surfaces of metals are frequently associated with dislocation nucleation, multiplication, and propagation. Insight into the nanomechanical origins of plasticity in metallic crystals may be gained through estimation of the stresses that nucleate dislocations. An assessment of the potential errors in the experimental measurement of nucleation stresses, especially in materials that exhibit the elastic–plastic transition at small indentation depths, is critical. In this work, the near-apex shape of a Berkovich probe was measured by scanning probe microscopy. This shape was then used as a “virtual” indentation probe in a 3-dimensional finite element analysis (FEA) of indentation on 〈100〉-oriented single-crystal tungsten. Simultaneously, experiments were carried out with the real indenter, also on 〈100〉-oriented single-crystal tungsten. There is good agreement between the FEA and experimental load–displacement curves. The Hertzian estimate of the radius of curvature was significantly larger than that directly measured from the scanning probe experiments. This effect was replicated in FEA simulation of indentation by a sphere. These results suggest that Hertzian estimates of the maximum shear stresses in the target material at the point of dislocation nucleation are a conservative lower bound. Stress estimates obtained from the experimental data using the Hertzian approximation were over 30% smaller than those determined from FEA.


Sign in / Sign up

Export Citation Format

Share Document