The Application of Numerical Simulation to Liquid Pipeline Leakage at LNG Terminal in China

Author(s):  
Zhichao Guo ◽  
Zhaoci Li

Abstract In 2018, China’s natural gas import reached 90.39 million tons, and the liquefied natural gas (LNG) import was 53.78 million tons, accounting for 59.5% of total natural gas imports. With the construction of LNG terminals, more studies on the leakage of LNG storage and transportation facilities have emerged to prevent catastrophic consequences such as explosions and frostbite. However, most of previous researches focused on gas pipeline leakage after LNG gasification, and few of those have been done on LNG liquid pipeline leakage. In this paper, Fluent software is used to numerically simulate the process of LNG liquid pipeline leakage. After the occurrence of LNG leakage, it will suffer the process of endothermic, evaporation, and diffusion, which is considered as a two-phase diffusion process. The Euler-Lagrangian method is introduced to simulate the diffusion process of gas phase and liquid phase separately. In the simulation, the liquid phase is regarded as discrete droplets for discrete processing. The movement trajectory, heat transfer process and evaporation process of each droplet are tracked respectively. Different from the liquid phase, the gas phase is regarded as a continuous phase and the Navier-Stokes equations are adopted for calculation. Thereafter, coupling calculations of two phase are performed to determine the concentration field and temperature field of the LNG liquid pipeline leakage. As a supplement to this research, the influence of wind speed on LNG leakage and diffusion process is analysed in detail. Finally, the numerical simulation method is applied to a coastal LNG terminal in northern China to determine the distribution of natural gas concentration and temperature, as well as delimit the combustion range. The results can provide scientific reference for the delimitation of risky zones and the formulation of emergency response strategy.

2012 ◽  
Vol 625 ◽  
pp. 117-120
Author(s):  
Hui Xu ◽  
Xiao Hong Chen

The liquid phase experiment is finished ,and the relation curve of input- pressure and input-flow、output-flow、distributary rate are worked out.We are bout to calculate the production capacity and define the best distribution rate of the operation parameters.At the same time , the solid-liquid phase separating experiment are made too and we conclude the relation curve of input-pressure and consistency 、separating efficiency .Comparing with the numerical simulation ,the result is reasonable.


1960 ◽  
Vol 82 (3) ◽  
pp. 609-621 ◽  
Author(s):  
S. L. Soo ◽  
H. K. Ihrig ◽  
A. F. El Kouh

Experimental methods for the determination of certain statistical properties of turbulent conveyance and diffusion of solid particles in a gaseous state are presented. Methods include a tracer-diffusion technique for the determination of gas-phase turbulent motion and a photo-optical technique for the determination of motion of solid particles. Results are discussed and compared with previous analytical results.


2021 ◽  
Vol 11 (21) ◽  
pp. 10496
Author(s):  
Yuntong Yang ◽  
Zhaoyu Jiang ◽  
Lianfu Han ◽  
Wancun Liu ◽  
Xingbin Liu ◽  
...  

As oil exploitation enters its middle and late stages, formation pressure drops, and crude oil degases. In production profile logging, the presence of the gas phase will affect the initial oil–water two-phase flowmeter’s flow measurement results. In order to eliminate gas-phase interference and reduce measurement costs, we designed a downhole gas–liquid separator (DGLS) suitable for low flow, high water holdup, and high gas holdup. We based it on the phase isolation method. Using a combination of numerical simulation and fluid dynamic measurement experiments, we studied DGLS separation efficiency separately in the two cases of gas–water two-phase flow and oil–gas–water three-phase flow. Comparative analysis of the numerical simulation calculation and dynamic test results showed that: the VOF model constructed based on k−ε the equation is nearly identical to the dynamic test, and can be used to analyze DGLS separation efficiency; the numerical simulation results of the gas–water two-phase flow show that when the total flow rate is below 20 m3/d, the separation efficiency surpasses 90%. The oil–gas–water three-phase’s numerical simulation results show that the oil phase influences separation efficiency. When the total flow rate is 20 m3/d–50 m3/d and gas holdup is low, the DGLS’s separation efficiency can exceed 90%. Our experimental study on fluid dynamics measurement shows that the DGLS’s applicable range is when the gas mass is 0 m3/d~15 m3/d, and the water holdup range is 50%~100%. The research presented in this article can provide a theoretical basis for the development and design of DGLSs.


2000 ◽  
Author(s):  
Eivind Helland ◽  
Rene Occelli ◽  
Lounes Tadrist

Abstract Simulations of 2D gas-particle flows in a vertical riser using a mixed Eulerian-Lagrangian approach are addressed. The model for the interstitial gas phase is based on the Navier-Stokes equations for two-phase flow with a coupling term between the gas and solid phases due to drag forces. The motion of particles is treated by a Lagrangian approach and the particles are assumed to interact through binary, instantaneous, non-frontal, inelastic collisions with friction. In this paper different particle clustering effects in the gas-particle flow is investigated.


Author(s):  
Jian-Hong Liu ◽  
Fu-Min Shang ◽  
Nikolay Efimov

Abstract Numerical simulation was performed to establishing a two-dimensional pulsating heat pipe model, to investigate the flow and heat transfer characteristics in the pulsating heat pipe by using the Mixture and Euler models, which were unsteady models of vapor-liquid two-phase, based on the control-volume numerical procedure utilizing the semi-implicit method. Through comparing and analyzing the volume fraction and velocity magnitude of gas phase to decide which model was more suitable for numerical simulation of the pulsating heat pipe in heat and mass transfer research. It was showed there had gas phase forming in stable circulation flow in the heating section, the adiabatic section using the Mixture and Euler models respectively, and they were all in a fluctuating state at 10s, besides, the pulsating heat pipe had been starting up at 1s and stabilizing at 5s, it was all found that small bubbles in the heat pipe coalescing into large bubbles and gradually forming into liquid plugs and gas columns from the contours of volume fraction of the gas phase; through comparing the contours of gas phase velocity, it could be seen that there had further stably oscillating flow and relatively stabler gas-liquid two-phase running speed in the pulsating heat pipe used the Mixture model, the result was consistent with the conclusion of the paper[11] extremely, from this it could conclude that the Mixture model could be better simulate the vaporization-condensation process in the pulsating heat pipe, which could provide an effective theoretical support for further understanding and studying the phase change heat and mass transfer mechanism of the pulsating heat pipe.


Author(s):  
Xincheng Tu ◽  
Sung-jun Kim ◽  
Hyoung-Bum Kim

In this study, we experimentally investigated the distribution of liquid and gas flow in the head of plate-fin heat exchanger. The scale-downed model of proto-type heat exchanger was used and the air and water replaced the natural gas and liquefied natural gas. Two CCD cameras were synchronized with laser to capture the image of liquid-gas flow in the head. Advanced imaging techniques such as LIF, PIV method were used to measure the velocity field of liquid and gas flow simultaneously. The characteristics of momentum transfer process between liquid phase and gas phase are presented in the terms of ensemble averaged result. The effect of liquid mass fraction on the flow distribution was investigated. Then, we quantified the flow distribution of liquid and gas phase for different inlet nozzle configurations.


2006 ◽  
Vol 28 (3) ◽  
pp. 134-144
Author(s):  
Nguyen The Duc

The paper presents a numerical method to simulate two-phase turbulent cavitating flows in ducts of varying cross-section usually faced in engineering. The method is based on solution of two-phase Reynolds-averaged Navier-Stokes equations of two-phase mixture. The numerical method uses artificial compressibility algorithm extended to unsteady flows with dual-time technique. The discreted method employs an implicit, characteristic-based upwind differencing scheme in the curvilinear grid systems. Numerical simulation of an unsteady three-dimensional two-phase cavitating flow in a duct of varying cross-section with available experiment was performed. The unsteady important characteristics of the unsteady flow can be observed in results of numerical simulation. Comparison of predicted results with experimental data for time-averaged velocity and phase fraction are provided.


Author(s):  
Sergey A. Zanochuev ◽  
Alexander B. Shabarov

Within the objectives of predicting the composition and properties of the produced fluid during the development of oil and gas condensate fields, this article proposes an experimental method for predicting the composition and properties of the produced fluid. In addition, the authors show its practical use in a situation where the liquid phase (precipitated condensate or oil) is filtered together with the gas phase. Based on the proposed approach, experimental data were obtained on changes in the current gas saturation of the formation, as well as on changes in the composition and properties of the produced fluid during field development for depletion. The studies make use of the real reservoir fluid samples and the data from the results of stream experiments, in order to determine the relative phase permeabilities.


2001 ◽  
Vol 4 (04) ◽  
pp. 289-296
Author(s):  
Holger F. Thern ◽  
Songhua Chen

Summary Accurate estimates of porosity, fluid saturations, and in-situ gas properties are critical for the evaluation of a gas reservoir. By combining data from a dual wait-time (DTW) nuclear magnetic resonance (NMR) log and a density log, these properties can be determined more reliably than by either of the data alone. The density and NMR dual wait-time (DDTW) technique, introduced in this paper, is applicable to reservoirs where the pore-filling fluid consists of a liquid phase and a gas phase. The low proton density of the gas phase causes a reduction in the NMR signal strength resulting in underestimation of the apparent porosity. The polarization for different wait-times depends on the spin-lattice relaxation time of each fluid and may cause additional NMR porosity underestimation. The density log, on the other hand, delivers a porosity that is overestimated because of the presence of a gas phase. These data, together with known correlations for gas properties, yield a robust approach for the gas-zone porosity, f, and the flushed zone gas saturation, Sg, xo. DDTW also derives gas properties including the in-situ gas density, ?g, as well as the two NMR-related properties, hydrogen index, IH, g, and spin-lattice relaxation time, T1g. Two field examples illustrate the method, and an error propagation study shows the reliability of the technique. Introduction NMR well logging yields information about fluid and rock properties. Depending on the goal of the investigation, various NMR measurement procedures are employed. Differences in the acquisition pulse sequence - including the wait-time (tw) between the echo-train measurements - characterize these procedures. Common evaluation techniques estimate different petrophysical properties, such as incremental and total porosities or movable (fm, NMR) and irreducible (fir, NMR) fluid fractions. More sophisticated methods separate the response of multiple fluids for hydrocarbon typing and saturation estimation. DTW NMR Log. Water as the wetting phase is dominated by surface relaxation and usually has a shorter T1 than hydrocarbons. DTW NMR uses the T1 contrast between aqueous fluid and hydrocarbon phases to achieve partial or full polarization for different fluid phases. The DTW log acquires two echo trains with a long (tw, L) and a short (tw, S) wait-time in a single pass; tw, L is chosen to fully polarize both water and hydrocarbon, and tw, S is sufficiently long to fully polarize the water fraction, while the hydrocarbon fraction is only partially polarized, causing porosity underestimation. An interpretation technique for DTW NMR data - used mainly qualitatively - is the differential spectrum method (DSM).1 A successful quantitative evaluation technique is the time domain analysis (TDA).2 Both techniques require the calculation of either differential echo signals or differential T2 spectra, where the spectra are derived from echo-train data by inversion. The differential signals are significantly weaker than the original signal, and the noise level increases because the incoherent noise of the echo trains is added. Differential data, therefore, are unfavorable in terms of their signal-to-noise ratio (SNR). SNR often limits the applicability of evaluation techniques that are based solely on NMR data. Particularly when coupled with low hydrocarbon saturation and the low proton density of a gas phase, poor SNR is the limiting factor in estimating accurate reservoir properties. Density Log. The density log provides a bulk density, ?b, of the investigated formation. Additional information about the density of the rock matrix and formation fluids determines the density porosity fr. An established method to evaluate gas-bearing formations combines the apparent porosities provided by the density and the neutron logging tools. For many data sets, however, this method yields only semiquantitative results because of the strong influence of rock mineralogy on the neutron measurement. Theory The porosity of clean formations bearing only liquid-phase components can be accurately quantified by either the NMR or the density logging tool. However, the tool's responses are significantly altered by the presence of a gas phase, causing the estimated porosities to deviate from the formation porosity. Three main effects cause the deviation.Low IH, g decreases the NMR porosity.Partial polarization Pg<1 decreases the NMR-derived porosity, if the wait-time between the NMR measurements is insufficiently long.Low ?g increases the density porosity. The characterization of a hydrocarbon gas by three key properties, ?g, IH, g, and T1g, effectively quantifies these effects. DTW NMR Log. In a two-phase system with one gas and one liquid phase, the total NMR porosity ft, NMR is expressed byEquation 1 where the first term on the right side describes the contribution of the gas phase and the second term describes the contribution of the liquid phase. The polarization P (with P?[0,1]) quantifies the reduction of the NMR signal caused by underpolarization. The termsEquation 2Equation 3 describe the polarization of the liquid and gas phases, respectively. Some approximations can be made for common reservoir conditions.IH, l is close to 1 for an aqueous-phase liquid and most oleic-phase liquids. In the presence of a light liquid hydrocarbon, its value can be slightly smaller (IH, l =0.8-1).If tw 3T1, the polarization is nearly unity. Typical tw values range from 1 to several seconds, whereas typical T1 values for formation water range from a few milliseconds to a few seconds. However, in a porous medium saturated with two fluid phases, the wetting phase (i.e., water) saturates smaller pores, and the maximum T1 of the aqueous-phase liquid usually reduces to values less than several hundreds of milliseconds.3 Thus, Pl is unity for aqueous-phase liquids in a two-phase system, when data are acquired with typical wait-time parameters in an MRIL®* DTW acquisition (i.e., tw, S,˜1–2 seconds and tw, L,˜6–10 seconds).


Sign in / Sign up

Export Citation Format

Share Document