A Review of Pipe-Soil Interaction Models for Strain Demand Estimation

Author(s):  
Dunji Yu ◽  
Yong-Yi Wang ◽  
Banglin Liu ◽  
Xiaotong Chen

Abstract Since the mid-1970s, various pipe-soil interaction (PSI) models have been developed to estimate the strain demand imposed on buried pipelines by the movement of the surrounding soil. These PSI models can be broadly divided into four categories: analytical models, soil-spring models, full continuum models and discrete element method models. These models can be used for strain-based design, fitness-for-service evaluation of in-service pipelines, and post-event failure analysis. In this paper, the working principles and modeling characteristics of the four types of PSI models for strain demand estimation are briefly reviewed and summarized. Analytical models calculate the bending and/or membrane strains from functions that describe the deflected profile of the pipe. The other three types of models utilize finite element (FE) modeling to predict the pipe displacement and the corresponding strain demand under given soil movement patterns. The primary difference between the three types of PSI FE models is the representation of the soil geometry and its interaction with the pipe. The four types of PSI models have their own strengths and limitations, which are discussed in terms of their applicability, accuracy, and the level of effort needed for model application. Two case studies were presented to demonstrate the potential differences in strain demand estimates using different PSI models.

2021 ◽  
Author(s):  
Rashique Iftekhar Rousseau ◽  
Abdel-Hakim Bouzid ◽  
Zijian Zhao

Abstract The axial stiffnesses of the bolt and clamped members of bolted joints are of great importance when considering their integrity and capacity to withstand external loads and resist relaxation due to creep. There are many techniques to calculate the stiffnesses of the joint elements using finite element (FE) modeling, but most of them are based on the displacement of nodes that are selected arbitrarily; therefore, leading to inaccurate values of joint stiffness. This work suggests a new method to estimate the stiffnesses of the bolt and clamped members using FE analysis and compares the results with the FE methods developed earlier and also with the existing analytical models. A new methodology including an axisymmetric finite element model of the bolted joint is proposed in which the bolts of different sizes ranging from M6 to M36 are considered for the analysis to generalize the proposed approach. The equivalent bolt length that includes the contribution of the thickness of the bolt head and the bolt nominal diameter to the bolt stiffness is carefully investigated. An equivalent bolt length that accounts for the flexibility of the bolt head is proposed in the calculation of the bolt stiffness and a new technique to accurately determine the stiffness of clamped members are detailed.


1993 ◽  
Vol 115 (4) ◽  
pp. 223-228
Author(s):  
G. King

Buried pipelines operating at elevated temperatures experience high longitudinal compressive stresses because the surrounding soil prevents thermal expansion. At high operating temperatures, buried pipelines can push through the soil at bends and buckle catastrophically. In soft soils they can lose lateral stability, and they can develop plastic failures. Thermally induced problems can be prevented with varying degrees of success by using thicker wall pipe, higher strength steel, longer radius bends, deeper burial, better backfill compaction, and/or prestressing during construction. Prestressing is most appropriate for pipelines operating at temperatures more than 80°C above ambient. One technique for prestressing a buried pipeline, that has been found to be both easy and economical for a liquid sulphur pipeline in Alberta, is to heat it with hot air and bury it while it is still hot. Pipe diameter and prestressing temperature both have a significant impact on the kind of heating equipment that is required.


Author(s):  
Fan Zhang ◽  
Yong-Yi Wang

The propagation of seismic waves introduces strains in buried pipelines. Considerable amount of work was performed in 1970’s and early 1980’s in this subject area. A good representative of such work is the model developed by Shinozuka and Koike in 1979. The analytical models developed during this period are still the major tools in assessing the influence of seismic waves on buried pipelines. The foundations of these models are the assumptions and some simplified soil and pipe interaction models available at the time. In 1984 a spring model representing the interaction between soil and buried pipes was introduced by American Society of Civil Engineers (ASCE) in Guidelines for the Seismic Design of Oil and Gas Pipeline Systems. An improved version of the ASCE model was later published in Guidelines for the Design of Buried Steel Pipe by American Lifelines Alliance in 2001. Since then, the spring model has become one of the most widely used models by various industries and has been incorporated into commercial software, such as AutoPIPE®. Most of the soil properties in fields are represented by the parameters of the ASCE soil-spring model. However, it is inconvenient to assess the influence of seismic waves on pipelines with soil properties described by parameters of the ASCE model. There are differences between the ASCE soil-spring model and the soil-pipe interactions in the seismic wave analysis model. In this paper the foundation of Shinozuka and Koike model is first reviewed. The model is then revised to accommodate the ASCE soil-spring model. Some unnecessary assumptions in the Shinozuka and Koike model are removed to make the model more generally applicable to various field conditions. Finally, the revised model is verified by finite element analysis under several typical pipeline field conditions, including straight segments and segments with bends and tees.


1985 ◽  
Vol 52 (4) ◽  
pp. 919-926 ◽  
Author(s):  
S. K. Datta ◽  
P. M. O’Leary ◽  
A. H. Shah

An exact analysis is presented here for the three-dimensional dynamics of a long continuous pipeline embedded in an elastic medium. A shell model of the pipe has been used here. It is shown that the dynamic amplification of axial and hoop stresses induced in the pipe due to incident plane longitudinal and shear waves depends crucially on the ratio of rigidities of the surrounding soil and the pipe. Induced stresses are also found to have appreciable frequency dependence for certain combinations of material properties and angles of incidence. Results presented here are also applicable to buried tunnels.


2021 ◽  
Vol 11 (12) ◽  
pp. 5554
Author(s):  
Hamzh Alarifi ◽  
Hisham Mohamad ◽  
Nor Faridah Nordin ◽  
Muhammad Yusoff ◽  
Aminu Darda’u Rafindadi ◽  
...  

Modern countries utilise buried pipelines for the long-distance transportation of water, oil, and gas due to their efficiency and continuity of delivery to receiving locations. Due to soil movements such as landslides, excessive earth pressure imposed on buried pipelines causes damage and, consequently, leaking of liquids, gases or other harmful effluents into the soil, groundwater, and atmosphere. By using a large-scale physical model, the lateral pipeline–soil interaction in sandy soil was researched. This study investigated the stress distribution on a buried pipe induced by lateral soil displacement. The external forces on the buried pipe caused by the surrounding soil motion were measured using earth pressure cells installed in the active zone along the pipeline. Additionally, visual inspection of ground deformation patterns on the surface, including tensile cracks, above a shallow-buried pipeline subjected to lateral soil movement was reported. The results revealed that lateral soil movement has a potency effect on buried pipelines. The findings also indicated that the highest stresses occur at the unstable soil boundaries prior to reaching the soil’s peak strength. After observing the soil surface’s rupture, most of the stress increments were concentrated in the middle section of the pipe.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4539
Author(s):  
Farzad Talebi ◽  
Junji Kiyono

Validated 3D solid finite element (FE) models offer an accurate performance of buried pipelines at earthquake faults. However, it is common to use a beam–spring model for the design of buried pipelines, and all the design guidelines are fitted to this modeling approach. Therefore, this study has focused on (1) the improvement of modeling techniques in the beam–spring FE modeling approach for the reproduction of the realistic performance of buried pipelines, and (2) the determination of an appropriate damage criterion for buried pipelines in beam–spring FE models. For this paper, after the verification of FE models by pull-out and lateral sliding tests, buried pipeline performance was evaluated at a strike-slip fault crossing using nonlinear beam–spring FE models and nonlinear 3D solid FE models. Material nonlinearity, contact nonlinearity, and geometrical nonlinearity effects were considered in all analyses. Based on the results, pressure and shear forces caused by fault movement and pipeline deformation around the high curvature zone cause local confinement of the soil, and soil stiffness around the high curvature zone locally increases. This increases the soil–pipe interaction forces on pipelines in high curvature zones. The beam–spring models and design guidelines, because of the uniform assumption of the soil spring stiffness along the pipe, do not consider this phenomenon. Therefore, to prevent the underestimation of forces on the pipeline, it is recommended to consider local increases in soil spring stiffness around the high curvature zone in beam–spring models. Moreover, drastic increases in the strain responses of the pipeline in the beam–spring model is a good criterion for a damage evaluation of the pipeline.


2012 ◽  
Vol 256-259 ◽  
pp. 1388-1391
Author(s):  
Shu He Wang ◽  
Zheng Zheng ◽  
Zai Gen Mu ◽  
Ju Bin Zhang

Underground pipelines affected by pit excavation are a practical problem often encountered in city foundation engineering. The characteristics of soil-nailing wall supporting include simplify, convenience, and low cost which make it widely adopted. Using MIDAS GTS for the integrated modeling, and the affecting factors are studied in four aspects, including excavation depth per step, pipelines’ depth, the distance between the edge of excavation and pipe, and the elastic modulus of surrounding soil. Some valuable conclusions for construction practice are drawn.


2015 ◽  
Vol 7 (3) ◽  
Author(s):  
M. Jia ◽  
R. P. Jia ◽  
J. J. Yu

This paper presents an approach based on parameterized compliance for type synthesis of flexure mechanisms with serial, parallel, or hybrid topologies. The parameterized compliance matrices have been derived for commonly used flexure elements, which are significantly influenced by flexure parameters including material and geometric properties. Different parameters of flexure elements generate different degree of freedom (DOF) characteristic of types. Enlightened by the compliance analysis of flexure elements, a parameterization approach with detailed processes and steps is introduced in this paper to help analyze and synthesize flexure mechanisms with the case study as serial chains, parallel chains, and combination hybrid chains. For a hybrid flexure, the results of finite element (FE) modeling simulations are compared to analytical compliance elements characteristic. Under linear deformations, the maximum compliance errors of analytical models are less than 6% compared with the FE models. The final goal of this work is to provide a parameterized approach for type synthesis of flexure mechanisms, which is used to configure and change the parameters of flexure mechanisms to achieve the desired DOF requirements of types initially.


1990 ◽  
Vol 112 (3) ◽  
pp. 291-295 ◽  
Author(s):  
B. K. Mishra ◽  
P. C. Upadhyay

This paper presents a theory of elasticity solution of the axisymmetric steady-state dynamic response of a buried pipeline excited by a plane longitudinal wave (P-wave) traveling in the surrounding soil. Both the pipeline and the ground have been assumed to be linearly elastic, homogeneous and isotropic. Linear elasticity equations of motion have been solved simultaneously for the pipeline and the surrounding soil. A perfect bond between the pipeline and the ground has been assumed. The midplane deformations of the pipeline have been plotted against the nondimensional wave number of the incident wave, for different soil condition and angle of incidence of the wave. The results of the present work have been compared with those found by using a shell theory which includes the effect of shear deformation and rotary inertia. It has been found that excellent agreement exists between the results obtained by the two approaches. The present work concludes that the use of shell model, including effects of shear deformation and rotary inertia, is justified for the analysis of dynamic response of buried pipelines excited by seismic waves traveling in the ground.


2018 ◽  
Vol 7 (2.21) ◽  
pp. 259
Author(s):  
Durga Prasad Valleti ◽  
Neelima Sathyam ◽  
S. Sivaranjani ◽  
C. Shahin ◽  
Sneha Mondal

Pipelines are important facilities over the huge area to encounter a seismic hazards and conditions of soil. In India pipe lines run through high seismic areas and exposed to considerable risk. The pipelines have advanced in India compare through the world scenario there is no uniform guideline available for seismic design. Therefore we need to establish at least degree of safety for standard seismic design of pipelines. As a part of this, a number of flexible pipelines of different diameter, length, and thickness have been taken into consideration. The density, internal pressure and density of surrounding soil are taken into account and is checked against permanent ground deformation (PGD) due to liquefaction. Using ABAQUS SOFTWARE we will analyse the soil pipeline interaction and based on the results obtained some consideration are given for the design of pipeline in the Liquefied zone, which improve the capability of the pipeline to withstand buoyancy force due to soil liquefaction. The safety of buried pipelines is analyzed as per IITK-GSDMA (IIT-Kanpur-Gujarat state Disaster Management Authority) guidelines on seismic design.


Sign in / Sign up

Export Citation Format

Share Document