On Wind-Wave Misalignment, Directional Spreading and Wave Loads

Author(s):  
Gerbrant Ph. Van Vledder

Causes of wind-wave misalignment, the difference between wind and mean wave direction, are investigated for stationary and non-stationary situations using numerical modeling. This includes the effects of upwind fetch restrictions, refraction, choice of source terms and integration time step on wind-wave misalignment are illustrated. A statistical analysis is performed to quantify wind-wave misalignment as a function of wind speed and significant wave height. In addition, the effect of spectral partitioning in separate wind sea and swell systems on the statistics of wind-wave misalignment is illustrated. Apart from the differences in mean direction, attention is given to the associated directional spreading. Implications for the design of offshore structures and the movements of moored ships are discussed.

Author(s):  
Fei Duan ◽  
Zhiqiang Hu ◽  
Jin Wang

Wind power has great potential because of its clean and renewable production compared to the traditional power. Most of the present researches for floating wind turbine rely on the hydro-aero-elastic-servo simulation codes and have not been exhaustively validated yet. Thus, model tests are needed and make sense for its high credibility to master the kinetic characters of floating offshore structures. The characters of kinetic responses of the spar-type wind turbine are investigated through model test research technique. This paper describes the methodology for wind/wave model test that carried out at Deepwater Offshore Basin in Shanghai Jiao Tong University at a scale of 1:50. A Spar-type floater was selected to support the wind turbine in this test and the model blade was geometrically scaled down from the original NREL 5 MW reference wind turbine blade. The detail of the scaled model of wind turbine and the floating supporter, the test set-up configuration, the mooring system, the high-quality wind generator that can create required homogeneous and low turbulence wind, and the instrumentations to capture loads, accelerations and 6 DOF motions are described in detail, respectively. The isolated wind/wave effects and the integrated wind-wave effects on the floating wind turbine are analyzed, according to the test results.


2019 ◽  
Author(s):  
Frédérick Jaouën ◽  
Arjen Koop ◽  
Lucas Vatinel

Abstract The horizontal motions of a moored offshore structure in waves are dominated by the resonance phenomena that occur at the natural frequencies of the system. Therefore, the maximum excursions of the structure depend on both the wave loads and the damping in the system. At present, potential flow calculations are employed for predicting the wave loads on offshore structures. However, such methods cannot predict hydrodynamic damping which is dominated by viscous effects. Therefore, the current practice in the industry is to obtain the low-frequency damping based on model testing. Nowadays, CFD simulations also have the potential to predict the low-frequency viscous damping of offshore structures in calm water. To obtain confidence in the accuracy of CFD simulations, a proper validation of the results of such CFD calculations is essential. In this paper, the flow around a forced surging or swaying LNGC is calculated using the CFD code ReFRESCO. The objective is to assess the accuracy and applicability of CFD for predicting the low-frequency viscous damping. After a description of the code and the used numerical methods, the results are presented and compared with results from model tests. Both inertia and damping coefficients are analyzed from the calculated hydrodynamics loads. Extensive numerical studies have been carried out to determine the influence of grid resolution, time step and iterative convergence on the flow solution and on the calculated damping. The numerical uncertainty of the results are assessed for one combination of amplitude and period for the surge motion. The CFD results are compared to experimental results indicating that the calculated damping coefficients agree within 5% for both surge and sway motion.


Author(s):  
Moritz Braun ◽  
Alfons Dörner ◽  
Kane Falco ter Veer ◽  
Tom Willems ◽  
Marc Seidel ◽  
...  

Fixed offshore wind turbines continue to be developed for high latitude areas where not only wind and wave loads need to be considered, but also moving sea ice. Current rules and regulations for the design of fixed offshore structures in ice-covered waters do not adequately consider effects of ice loading and its stochastic nature on fatigue life of the structure. Ice crushing on such structures results in ice-induced vibrations, which can be represented by loading the structure using a variable-amplitude loading (VAL) sequence. Typical offshore load spectra are developed for wave and wind loading. Thus, a combined VAL spectrum is developed for wind, wave, and ice action. To this goal, numerical models are used to simulate the dynamic ice-, wind-, and wave-structure interaction. The stress time-history at an exemplarily selected critical point in an offshore wind energy monopile support structure is extracted from the model and translated into a VAL sequence, which can then be used as a loading sequence for the fatigue assessment or fatigue testing of welded joints of offshore wind turbine support structures. This study presents the approach to determine combined load spectra and standardized time series for wind, wave, and ice action.


Author(s):  
H. Yu ◽  
N. Srivastava

The broad objective of the research presented herein is to analyze dynamical interactions in offshore structures under combined wind and wave loads for enhanced power delivery and reliability of hybrid wind-wave generation systems. As an offshore structure representative, a model for an inclined floating cylinder at finite depth is developed employing linear wave theory coupled with wind-induced effects. Although detailed wave models have often been incorporated while studying the dynamics of such cylinders, wind-induced effects have been mostly modeled as an axial drag term that affects the drift of the structure along the wind direction. In this article, the effects of not only wind-induced drag, but also lift and oscillations on the structure (i.e. the floating inclined cylinder) are studied. Further, the effects of vortex shedding are considered. Cross-flow principle is used to calculate the wind loads on the cylinder. Assuming small wave steepness and a large radius of cylinder (in comparison to the wavelength), linear wave diffraction and radiation theory coupled with wind-induced effects is employed to analyze the dynamic response of the inclined floating cylinder. Numerical results on the dynamic response of an inclined floating cylinder subjected to coupled wind-wave loading system are presented and discussed while highlighting the increasing relevance of such modeling strategies for hybrid wind-wave power generation systems and their control.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 559
Author(s):  
Moritz Braun ◽  
Alfons Dörner ◽  
Kane F. ter Veer ◽  
Tom Willems ◽  
Marc Seidel ◽  
...  

Fixed offshore wind turbines continue to be developed for high latitude areas where not only wind and wave loads need to be considered but also moving sea ice. Current rules and regulations for the design of fixed offshore structures in ice-covered waters do not adequately consider the effects of ice loading and its stochastic nature on the fatigue life of the structure. Ice crushing on such structures results in ice-induced vibrations, which can be represented by loading the structure using a variable-amplitude loading (VAL) sequence. Typical offshore load spectra are developed for wave and wind loading. Thus, a combined VAL spectrum is developed for wind, wave, and ice action. To this goal, numerical models are used to simulate the dynamic ice-, wind-, and wave-structure interaction. The stress time-history at an exemplarily selected critical point in an offshore wind energy monopile support structure is extracted from the model and translated into a VAL sequence, which can then be used as a loading sequence for the fatigue assessment or fatigue testing of welded joints of offshore wind turbine support structures. This study presents the approach to determine combined load spectra and standardized time series for wind, wave, and ice action.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 431
Author(s):  
Junjie Ye ◽  
Hao Sun

In order to study the influence of an integration time step on dynamic calculation of a vehicle-track-bridge under high-speed railway, a vehicle-track-bridge (VTB) coupled model is established. The influence of the integration time step on calculation accuracy and calculation stability under different speeds or different track regularity states is studied. The influence of the track irregularity on the integration time step is further analyzed by using the spectral characteristic of sensitive wavelength. According to the results, the disparity among the effect of the integration time step on the calculation accuracy of the VTB coupled model at different speeds is very small. Higher speed requires a smaller integration time step to keep the calculation results stable. The effect of the integration time step on the calculation stability of the maximum vertical acceleration of each component at different speeds is somewhat different, and the mechanism of the effect of the integration time step on the calculation stability of the vehicle-track-bridge coupled system is that corresponding displacement at the integration time step is different. The calculation deviation of the maximum vertical acceleration of the car body, wheel-sets and bridge under the track short wave irregularity state are greatly increased compared with that without track irregularity. The maximum vertical acceleration of wheel-sets, rails, track slabs and the bridge under the track short wave irregularity state all show a significant declining trend. The larger the vibration frequency is, the smaller the range of integration time step is for dynamic calculation.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 315
Author(s):  
Francesco Aristodemo ◽  
Giuseppe Tripepi ◽  
Luana Gurnari ◽  
Pasquale Filianoti

We present an analysis related to the evaluation of Morison and transverse force coefficients in the case of a submerged square barrier subject to the action of solitary waves. To this purpose, two-dimensional experimental research was undertaken in the wave flume of the University of Calabria, in which a rigid square barrier was provided by a discrete battery of pressure sensors to determine the horizontal and vertical hydrodynamic forces. A total set of 18 laboratory tests was carried out by varying the motion law of a piston-type paddle. Owing to the low Keulegan–Carpenter numbers of the tests, the force regime of the physical tests was defined by the dominance of the inertia loads in the horizontal direction and of the lift loads in the vertical one. Through the use of the time series of wave forces and the undisturbed kinematics, drag, horizontal inertia, lift, and vertical inertia coefficients in the Morison and transverse semi-empirical schemes were calculated using time-domain approaches, adopting the WLS1 method for the minimization of the difference between the maximum forces and the linked phase shifts by comparing laboratory and calculated wave loads. Practical equations to calculate these coefficients as a function of the wave non-linearity were introduced. The obtained results highlighted the prevalence of the horizontal forces in comparison with the vertical ones which, however, prove to be fundamental for stability purposes of the barrier. An overall good agreement between the experimental forces and those calculated by the calibrated semi-empirical schemes was found, particularly for the positive horizontal and vertical loads. The analysis of the hydrodynamic coefficients showed a decreasing trend for the drag, horizontal inertia, and lift coefficients as a function of the wave non-linearity, while the vertical inertia coefficient underlined an initial increasing trend and a successive slight decreasing trend.


Author(s):  
Andrew Cornett

Many deck-on-pile structures are located in shallow water depths at elevations low enough to be inundated by large waves during intense storms or tsunami. Many researchers have studied wave-in-deck loads over the past decade using a variety of theoretical, experimental, and numerical methods. Wave-in-deck loads on various pile supported coastal structures such as jetties, piers, wharves and bridges have been studied by Tirindelli et al. (2003), Cuomo et al. (2007, 2009), Murali et al. (2009), and Meng et al. (2010). All these authors analyzed data from scale model tests to investigate the pressures and loads on beam and deck elements subject to wave impact under various conditions. Wavein- deck loads on fixed offshore structures have been studied by Murray et al. (1997), Finnigan et al. (1997), Bea et al. (1999, 2001), Baarholm et al. (2004, 2009), and Raaij et al. (2007). These authors have studied both simplified and realistic deck structures using a mixture of theoretical analysis and model tests. Other researchers, including Kendon et al. (2010), Schellin et al. (2009), Lande et al. (2011) and Wemmenhove et al. (2011) have demonstrated that various CFD methods can be used to simulate the interaction of extreme waves with both simple and more realistic deck structures, and predict wave-in-deck pressures and loads.


Author(s):  
Remmelt J. van der Wal ◽  
Gerrit de Boer

Offshore operations in open seas may be seriously affected by the weather. This can lead to a downtime during these operations. The question whether an offshore structure or dredger is able to operate in wind, waves and current is defined as “workability”. In recent decades improvements have been made in the hydrodynamic modelling of offshore structures and dredgers. However, the coupling of these hydrodynamic models with methods to analyse the actual workability for a given offshore operation is less developed. The present paper focuses on techniques to determine the workability (or downtime) in an accurate manner. Two different methods of determining the downtime are described in the paper. The first method is widely used in the industry: prediction of downtime on basis of wave scatter diagrams. The second method is less common but results in a much more reliable downtime estimate: determination of the ‘job duration’ on basis of scenario simulations. The analysis using wave scatter diagrams is simple: the downtime is expressed as a percentage of the time (occurrences) that a certain operation can not be carried out. This method can also be used for a combination of operations however using this approach does not take into account critical events. This can lead to a significant underprediction of the downtime. For the determination of the downtime on basis of scenario simulations long term seastate time records are used. By checking for each subsequent time step which operational mode is applicable and if this mode can be carried out the workability is determined. Past events and weather forecast are taken into account. The two different methods are compared and discussed for a simplified offloading operation from a Catenary Anchor Leg Mooring (CALM) buoy. The differences between the methods will be presented and recommendations for further applications are given.


2021 ◽  
Author(s):  
Malene Hovgaard Vested ◽  
Erik Damgaard Christensen

Abstract The forces on marine and offshore structures are often affected by spilling breakers. The spilling breaker is characterized by a roller of mixed air and water with a forward speed approximately equal to the wave celerity. This high speed in the top of the wave has the potential to induce high wave loads on upper parts of the structures. This study analyzed the effect of the air content on the forces. The analyses used the Morison equation to examine the effect of the percentage of air on the forces. An experimental set-up was developed to include the injection of air into an otherwise calm water body. The air-injection did introduce a high level a turbulence. It was possible to assess the amount of air content in the water for different amounts of air-injection. In the mixture of air and water the force on an oscillating square cylinder was measured for different levels of air-content, — also in the case without air. The measurements indicated that force coefficients for clear water could be use in the Morison equation as long as the density for water was replaced by the density for the mixture of air and water.


Sign in / Sign up

Export Citation Format

Share Document