A Numerical Study of TAD and TLP Platforms Operating Side by Side

Author(s):  
Bo Tong ◽  
Rui Chang ◽  
Zhuang Kang ◽  
Haibo Sui ◽  
Shaojie Li

Abstract A Tender Assisted Drilling (TAD) is typically a support vessel that serves support of a drilling rig, by offering comfortable accommodation for crew and providing additional space where the Drilling Equipment Set is stored and transported. The operation with TAD provides an economical and flexible way for offshore drilling, especially with TLP. Dynamic response of tender-assisted drilling system is crucial due to the safety concern. However, some urgent issue has not been thoroughly studied in tender assisted drilling operation like the hydrodynamic interaction and the impact of nonlinearity cable used. In this paper, a tender assisted drilling system which was taken as the research object was investigated under the metocean conditions of West Africa. The numerical model was established in frequency domain using 3D multi-body diffraction/radiation wave theory and the hydrodynamic interaction is studied in this part. Then two kinds mull-body system with different hawsers arrangements are analyzed by the time domain simulation was performed considering hydrodynamic interaction and the impact of nonlinearity of mooring lines and hawsers. The Time history results of floating body motion and the force on mooring line is compared between two schemes. The results obtained is also investigated by spectral analysis to clearly understand the coupled behavior of such system under these two arrangement.

Author(s):  
Tanvir Mehedi Sayeed ◽  
Bruce Colbourne ◽  
Heather Peng ◽  
Benjamin Colbourne ◽  
Don Spencer

Iceberg/bergy bit impact load with fixed and floating offshore structures and supply ships is an important design consideration in ice-prone regions. Studies tend to divide the iceberg impact problem into phases from far field to contact. This results in a tendency to over simplify the final crucial stage where the structure is impacted. The authors have identified knowledge gaps and their influence on the analysis and prediction of iceberg impact velocities and loads (Sayeed et. al (2014)). The experimental and numerical study of viscous dominated very near field region is the main area of interest. This paper reports preliminary results of physical model tests conducted at Ocean Engineering Research Center (OERC) to investigate hydrodynamic interaction between ice masses and fixed offshore structure in close proximity. The objective was to perform a systematic study from simple to complex phenomena which will be a support base for the development of subsequent numerical models. The results demonstrated that hydrodynamic proximity and wave reflection effects do significantly influence the impact velocities at which ice masses approach to large structures. The effect is more pronounced for smaller ice masses.


2019 ◽  
Vol 490 (3) ◽  
pp. 3601-3607 ◽  
Author(s):  
S V Bogovalov ◽  
D Khangulyan ◽  
A Koldoba ◽  
G V Ustyugova ◽  
F Aharonian

ABSTRACT We present a numerical study of the properties of the flow produced by the collision of a magnetized anisotropic pulsar wind with the circumbinary environment. We focus on studying the impact of the high wind magnetization on the geometrical structure of the shocked flow. This work is an extension of our earlier studies that focused on a purely hydrodynamic interaction and weak wind magnetization. We consider the collision in the axisymmetric approximation, i.e. the pulsar rotation axis is assumed to be oriented along the line between the pulsar and the optical star. The increase of the magnetization results in the expansion of the opening cone in which the shocked pulsar wind propagates. This effect is explained in the frameworks of the conventional theory of collimation of magnetized winds. This finding has a direct implication for scenarios that involve Doppler boosting as the primary mechanism behind the GeV flares detected with the Fermi Large Area Telescope from PSR B1259−63/LS 2883. The maximum enhancement of the apparent emission is determined by the ratio of 4$\pi$ to the solid in which the shocked pulsar wind propagates. Our simulations suggest that this enhancement factor is decreased by the impact of the magnetic field.


2013 ◽  
Vol 353-356 ◽  
pp. 3713-3716
Author(s):  
Lin Sen Zhu ◽  
Yan Gang Wang ◽  
Yong Liu

This paper aims to study the impact of resonance on floating body motion. According to Archimedes law, Newton's second law of motion and general form of simple harmonic oscillations, nature frequency is gotten in the numerical calculation. Then, the result is validated using four bodies with different weights in numerical calculation and finite element simulation.


2020 ◽  
Vol 8 (5) ◽  
pp. 343
Author(s):  
Hung-Jie Tang ◽  
Chai-Cheng Huang ◽  
Ray-Yeng Yang

This study aims to investigate the influence of fishnet mesh size on a floating platform. A self-developed, time-domain numerical model was used for the evaluation. This model is based on potential flow theory, uses the boundary element method (BEM) to solve nonlinear wave-body interactions, and applies the Morison equation to calculate the hydrodynamic forces exerted on fishnets. The mooring system is treated as a linear and symmetric spring. The results near the resonant frequency of the platform indicate that the smaller the fishnet mesh size, the lower the heave, pitch, and sea-side tension response amplitude operators (RAOs), but the higher the reflection coefficient. The results in the lower frequency region reveal that the smaller the fishnet mesh size, the lower the surge and heave RAOs, but the higher the pitch and tension RAOs. Meanwhile, the time-domain results at the resonant frequency of heave motion are shown to indicate the influences of a platform with various fishnets mesh sizes on the rigid body motion, mooring line tension, and transmitted wave heights. In addition, a comparison of nonlinear effects indicates that, after reducing the fishnet mesh size, the second-order RAOs of heave, pitch, and sea-side tension decrease, but the changes are minor against the first-order results.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Huawei Yang ◽  
Ji-wei Luo ◽  
Jie Zhang ◽  
Pei-wen Zhang

Investigation on penetration into concrete targets is of great importance as concrete is widely used as the fundamental construction material. To achieve a more accurate prediction of penetration depths of concrete targets, a further study was conducted to explore the entrance effect by using AUTODYN hydrocode in this study. The numerical results on both deceleration-time history and depth of penetration of projectiles are in good agreement with experimental data, which demonstrate the feasibility of the numerical model in these conditions. A new target model was established with a predrilled hole around the symmetry axis to simulate the entrance effect of the crater phase on the penetration process. Compared with the regular target, the predrilled target enters the peak of acceleration earlier, leading to the reduction of the depth of penetration. In addition, simulation results indicated that nose shape significantly influenced crater region depth, while the depth was independent of the impact velocity and the target strength. Based on the simulation of entrance effect, a modified formula of penetration depth has been proposed and validated in terms of different nose shapes. The crater region depths obtained from the simulations can improve the accuracy of the predictions of the penetration depths for the penetration of concrete targets.


2021 ◽  
Vol 13 (8) ◽  
pp. 4278
Author(s):  
Svetlana Tam ◽  
Jenna Wong

Sustainability addresses the need to reduce the structure’s impact on the environment but does not reduce the environment’s impact on the structure. To explore this relationship, this study focuses on quantifying the impact of green roofs or vegetated roofs on seismic responses such as story displacements, interstory drifts, and floor level accelerations. Using an archetype three-story steel moment frame, nonlinear time history analyses are conducted in OpenSees for a shallow and deep green roof using a suite of ground motions from various distances from the fault to identify key trends and sensitivities in response.


2021 ◽  
pp. 174425912098418
Author(s):  
Toivo Säwén ◽  
Martina Stockhaus ◽  
Carl-Eric Hagentoft ◽  
Nora Schjøth Bunkholt ◽  
Paula Wahlgren

Timber roof constructions are commonly ventilated through an air cavity beneath the roof sheathing in order to remove heat and moisture from the construction. The driving forces for this ventilation are wind pressure and thermal buoyancy. The wind driven ventilation has been studied extensively, while models for predicting buoyant flow are less developed. In the present study, a novel analytical model is presented to predict the air flow caused by thermal buoyancy in a ventilated roof construction. The model provides means to calculate the cavity Rayleigh number for the roof construction, which is then correlated with the air flow rate. The model predictions are compared to the results of an experimental and a numerical study examining the effect of different cavity designs and inclinations on the air flow rate in a ventilated roof subjected to varying heat loads. Over 80 different test set-ups, the analytical model was found to replicate both experimental and numerical results within an acceptable margin. The effect of an increased total roof height, air cavity height and solar heat load for a given construction is an increased air flow rate through the air cavity. On average, the analytical model predicts a 3% higher air flow rate than found in the numerical study, and a 20% lower air flow rate than found in the experimental study, for comparable test set-ups. The model provided can be used to predict the air flow rate in cavities of varying design, and to quantify the impact of suggested roof design changes. The result can be used as a basis for estimating the moisture safety of a roof construction.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1425
Author(s):  
Tarek Bouzennada ◽  
Farid Mechighel ◽  
Kaouther Ghachem ◽  
Lioua Kolsi

A 2D-symmetric numerical study of a new design of Nano-Enhanced Phase change material (NEPCM)-filled enclosure is presented in this paper. The enclosure is equipped with an inner tube allowing the circulation of the heat transfer fluid (HTF); n-Octadecane is chosen as phase change material (PCM). Comsol-Multiphysics commercial code was used to solve the governing equations. This study has been performed to examine the heat distribution and melting rate under the influence of the inner-tube position and the concentration of the nanoparticles dispersed in the PCM. The inner tube was located at three different vertical positions and the nanoparticle concentration was varied from 0 to 0.06. The results revealed that both heat transfer/melting rates are improved when the inner tube is located at the bottom region of the enclosure and by increasing the concentration of the nanoparticles. The addition of the nanoparticles enhances the heat transfer due to the considerable increase in conductivity. On the other hand, by placing the tube in the bottom area of the enclosure, the liquid PCM gets a wider space, allowing the intensification of the natural convection.


2021 ◽  
pp. 1-29
Author(s):  
Yanhong Chen

ABSTRACT In this paper, we study the optimal reinsurance contracts that minimize the convex combination of the Conditional Value-at-Risk (CVaR) of the insurer’s loss and the reinsurer’s loss over the class of ceded loss functions such that the retained loss function is increasing and the ceded loss function satisfies Vajda condition. Among a general class of reinsurance premium principles that satisfy the properties of risk loading and convex order preserving, the optimal solutions are obtained. Our results show that the optimal ceded loss functions are in the form of five interconnected segments for general reinsurance premium principles, and they can be further simplified to four interconnected segments if more properties are added to reinsurance premium principles. Finally, we derive optimal parameters for the expected value premium principle and give a numerical study to analyze the impact of the weighting factor on the optimal reinsurance.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110094
Author(s):  
Ibrahim Elnasri ◽  
Han Zhao

In this study, we numerically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effects of quasi-static loading, landing rates, and boundary conditions on the perforation resistance of the studied graded core sandwich panels were discussed. The simulation results showed that the piercing force–displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with unclumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document