Sensitivity of Magnetorheological Damper Behavior to Perturbations in Temperature

Author(s):  
Sevki Cesmeci ◽  
Nicholas L. Wilson ◽  
Norman M. Wereley ◽  
Ismail Sahin

In this study, the temperature dependent dynamic behavior of a magnetorheological (MR) damper is characterized. Substantial effort has been devoted to developing an understanding of the dynamic behavior of MR dampers with virtually no emphasis on temperature effects. However, MR dampers can experience large variations in temperature during operation as a result of damper self-heating, which may cause significant perturbations to its damping and yield force. Temperature variations also induce stiffness changes in the pneumatic accumulator due to gas law effects. To model temperature dependent effects, an MR damper, which was designed and fabricated for a ground vehicle seat suspension application, was tested over temperatures ranging from 0 °C to 100 °C at a constant frequency of 4 Hz and a constant amplitude of 7.62 mm on an MTS-810 material testing system equipped with a temperature-controlled environmental chamber. To model the MR damper behavior, a parametric algebraic model was used due to its physically motivated, low computational cost and high accuracy. Temperature dependent model parameters are identified from the experimental data by using a curve fitting method. Perturbations in model parameters arising over the tested temperature range indicate that yield force and post-yield viscosity are strongly dependent on temperature. As operating temperature increased from 0°C to 100°C, the controllable yield force decreased by up to 20%, the post-yield damping decreased by over 60%, and the stiffness at high piston velocity also increased significantly.

2020 ◽  
Vol 10 (16) ◽  
pp. 5586
Author(s):  
Bo-Gyu Kim ◽  
Dal-Seong Yoon ◽  
Gi-Woo Kim ◽  
Seung-Bok Choi ◽  
Aditya Suryadi Tan ◽  
...  

In this study, a new class of magnetorheological (MR) damper, which can realize desired damping force at both low and high speeds of vehicle suspension systems, is proposed and its salient characteristics are shown through computer simulations. Unlike conventional MR dampers, the proposed MR damper has a specific pole shape function and therefore the damping coefficient is changed by varying the effective area of the main orifice. In addition, by controlling the opening or closing the bypass orifice, the drastic change of the damping coefficient is realizable. After briefly describing the operating principle, a mathematical modeling is performed considering the pole shape function which is a key feature of the proposed MR damper. Then, the field-dependent damping force and piston velocity-dependent characteristics are presented followed by an example on how to achieve desired damping force characteristics by changing the damping coefficient and slope breaking point which represents the bilinear damping property.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Zhizhen Dong ◽  
Zhimin Feng ◽  
Yuehua Chen ◽  
Kefan Yu ◽  
Gang Zhang

The consistency of magnetic flux density of damping gap (CMDG) represents the balancing magnetic flux density in each damping gap of magnetorheological (MR) dampers. It can make influences on the performances of MR dampers and the accuracy of relevant objective functions. In order to improve the mechanical performances of the MR damper with a two-stage coil, the function for calculating CMDG needs to be found. By establishing an equivalent magnetic circuit model of the MR damper, the CMDG function is derived. Then, the multiobjective optimization function and the working flow of optimal design are presented by combining the parallel-plate model of the MR damper with the function posed before. Taking the damping force, the dynamic range, the response time, and the CMDG as the optimization objective, and the external geometric dimensions of the SG-MRD60 damper as the bound variable, this paper optimizes the internal geometric dimensions of MR damper by using a NSGA-III algorithm on the PlatEMO platform. The results show that the obtained scheme in Pareto-optimal solutions has existed with better performance than that of SG-MRD60 scheme. According to the results of the finite element analysis, the multiobjective optimization design including the CMDG function can improve the uniformity of magnetic flux density of the MR damper in damping gap, which meets the requirements of manufacture and application.


2018 ◽  
Vol 84 (2) ◽  
pp. 21101
Author(s):  
Joanes Berasategui ◽  
Ainara Gomez ◽  
Manex Martinez-Agirre ◽  
Maria Jesus Elejabarrieta ◽  
M. Mounir Bou-Ali

The objective of this article is to determine the optimal flow mode in an MR damper to maximize its performance. Flow mode is one of the main design issues in an MR damper, as it determines the velocity profile and the pressure drop across the gap. In this research, two MR dampers were designed and manufactured with two flow modes: valve and mixed. The response of these two dampers was compared experimentally. Additionally, the experimental tests were correlated by theoretical results that were obtained considering the rheological behaviour of the MR fluid, the shear stress distribution in the gap, and the damper movement. Interestingly, the obtained results suggest that flow mode is not a significant parameter for determining the behaviour of a MR damper.


Author(s):  
Anria Strydom ◽  
Werner Scholtz ◽  
Schalk Els

Magnetorheological (MR) dampers are controllable semi-active dampers capable of providing a range of continuous damping settings. MR dampers are often incorporated in suspension systems of vehicles where conflicting damping characteristics are required for favorable ride comfort and handling behavior. For control applications the damper controller determines the required damper current in order to track the desired damping force, often by using a suitable MR damper model. In order to utilise the fast switching time capability of MR dampers, a model that can be used to directly calculate damper current is desired. Unfortunately few such models exist and other methods, which often negatively affect the computational efficiency of the model, need to be used when implementing these models. In this paper a selection of MR damper models are developed and evaluated for both accuracy and computational efficiency while tracking a desired damping force. The Kwok model is identified as a suitable candidate for the intended suspension control application.


2013 ◽  
Vol 135 (8) ◽  
Author(s):  
Zekeriya Parlak ◽  
Tahsin Engin ◽  
İsmail Şahin

Magnetorheological (MR) dampers have attracted the interest of suspension designers and researchers because of their variable damping feature, mechanical simplicity, robustness, low power consumption and fast response. This study deals with the optimal configuration of an MR damper using the Taguchi experimental design approach. The optimal solutions of the MR damper are evaluated for the maximum dynamic range and the maximum damper force separately. The MR dampers are constrained in a cylindrical container defined by radius and height. The optimal damper configurations obtained from this study are fabricated and tested for verification. The verification tests show that the dampers provide the specified damper force and dynamic range.


2013 ◽  
Vol 361-363 ◽  
pp. 1402-1405
Author(s):  
Zhi Hao Wang

Effective vibration control technology for stay cables is extremely critical to safe operations of cable-stayed bridges. For super-long cables, passive linear damper cannot provide sufficient damping since it can be only optimum for a given mode of cable, while a long cable may vibrate with several modes. This paper focuses on multi-mode vibration control of stay cables with passive magnetorheological (MR) dampers. Firstly, a 21.6m-long model cable was designed and established in the laboratory.Then, control performance of the cable with a passive MR damper was tested. The test results show that modal damping ratios of the cable in the first four modes can be improved significantly with the MR damper. It is further demonstrated that optimal tuned passively operated MR damper can outperform the passive viscous damper.


2011 ◽  
Vol 301-303 ◽  
pp. 430-435
Author(s):  
Hong Sheng Hu ◽  
Juan Wang

Combining with the current development trend of vehicle suspension and damper technology, different standards of MR dampers are respectively developed in this paper in order to solve problems the semi-active suspend engineering application brings, where its structure design of a certain type of MR damper is detailedly analyzed from the point of engineering view. In order to speed up the progress of MR damper development, based on 1/4 suspend hardware-in-the-loop tester, the integrated developing platform for MR damper with embedded controller is designed and developed, in which some key parts are included, such as assistant algorithm of structure design, exploitation tool of speediness testing, communication interface of CAN bus. The integrated developing platform for MR damper with embedded controller is the same with MR product’s exploitation flow. Finally, its hardware and software design of the measuring-controlling unit for MR damper with embedded controller, are introduced, and some test results are also show and analyzed. Experimental results prove that the developed MR damper with embedded controller would have a widely application prospect.


Author(s):  
Pinjala Devikiran ◽  
NP Puneet ◽  
Abhinandan Hegale ◽  
Hemantha Kumar

Magnetorheological dampers have been the interest of many researchers for a few decades for the reason of being an effective and rapidly progressing technology in the field of semi-active controlled suspension. The dynamic behaviour of these devices with nonlinear hysteresis is quite a complicated phenomenon. Hence, this paper aims at the design, modelling and simulation of a custom-made MR damper for a two-wheeler vehicle. The Kwok model has been chosen to mathematically model the MR damper. The model parameters have been optimised by minimizing the error difference between experimental and model-generated force results. A PID control is designed to control the damper effectively depending on the deflection of the damper. The two-wheeler vehicle modelled with four degrees of freedom is coupled with a mathematical model of MR damper in front and rear suspension. Further, the dynamic analysis has been performed in MATLAB/Simulink considering random road input for different velocities and current input conditions. The improved performance of MR damper was observed in suppressing road irregularities using a PID controller. As an implementation part of the work, the developed damper has been implemented in a two wheeler vehicle for performance evaluation at on-road testing conditions. The results showed significant improvement in damper performance with increment of constant current controlling MR dampers.


2017 ◽  
Vol 24 (15) ◽  
pp. 3434-3453 ◽  
Author(s):  
MJL Boada ◽  
BL Boada ◽  
V Diaz

Semi-active suspensions based on magnetorheological (MR) dampers are receiving significant attention, especially for control of vibration isolation systems. The nonlinear hysteretic behavior of MR dampers can cause serious problems in controlled systems, such as instability and loss of robustness. Most of the developed controllers determine the desired damping forces which should be produced by the MR damper. Nevertheless, the MR damper behavior can only be controlled in terms of the applied current (or voltage). In addition to this, it is necessary to develop an adequate inverse dynamic model in order to calculate the command current (or voltage) for the MR damper to generate the desired forces as close as possible to the optimal ones. Due to MR dampers being highly nonlinear devices, the inverse dynamics model is difficult to obtain. In this paper, a novel inverse MR damper model based on a network inversion is presented to estimate the necessary current (or voltage) such that the desired force is exerted by the MR damper. The proposed inverse model is validated by carrying out experimental tests. In addition, a comparison of simulated tests with other damper controllers is also presented. Results show the effectiveness of the network inversion for inverse modeling of an MR damper. Thus, the proposed inverse model can act as a damper controller to generate the command current (or voltage) to track the desired damping force.


Author(s):  
Ehsan Asadi ◽  
Siamak Arzanpour

This paper introduces a methodology for generating digital resistance-map that can be utilized in an MR-Damper based robotic rehabilitation. Typically, in rehabilitation procedures, patients are getting involved in the recovery process of gradually training weak and damaged muscles by constraining motion in repetitive exercises. The whole purpose of robotic rehabilitation is to restrict body organ motion to the one prescribed by the therapist at the initial steps of treatment to avoid further damages to other weak muscles while focusing on recovering a particular muscle. MR-Dampers are semi-active actuators that can potentially be employed for this application. These dampers can be activated to produce high resistance to motion, and a platform that contains sufficient number of them can be manipulated to create regions of different resistance against motion. To apply this to the robotic rehabilitation, the motion recommended by the therapist should be converted to the resistance-maps that can be used by MR-Damper for implementation. To accomplish that, procedure of generating the digital resistance map is introduced and several digital resistance-maps are created. An MR-damper control methodology is also developed to activate the dampers. This controller relies on the accurate modeling of the MR-Damper. Bouc-Wen model is used for MR-Damper modeling. A 3-D platform containing three linear MR-Dampers is modeled using SimMechanics. 1-D and 2-D models are used to develop the idea and build up 3-D model. Several simulations are carried out to investigate the performance of the systems in generating the prescribed digital resistance-maps. The promising results of the simulations indicate that the method can be adopted for robotic rehabilitation purposes.


Sign in / Sign up

Export Citation Format

Share Document